skip to main content


Search for: All records

Award ID contains: 1661799

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This work examines a severe weather event that took place over central Argentina on 11 December 2018. The evolution of the storm from its initiation, rapid organization into a supercell, and eventual decay was analyzed with high‐temporal resolution observations. This work provides insight into the spatio‐temporal co‐evolution of storm kinematics (updraft area and lifespan), cloud‐top cooling rates, and lightning production that led to severe weather. The analyzed storm presented two convective periods with associated severe weather. An overall decrease in cloud‐top local minima IR brightness temperature (MinIR) and lightning jump (LJ) preceded both periods. LJs provided the highest lead time to the occurrence of severe weather, with the ground‐based lightning networks providing the maximum warning time of around 30 min. Lightning flash counts from the Geostationary Lightning Mapper (GLM) were underestimated when compared to detections from ground‐based lightning networks. Among the possible reasons for GLM's lower detection efficiency were an optically dense medium located above lightning sources and the occurrence of flashes smaller than GLM's footprint. The minimum MinIR provided the shorter warning time to severe weather occurrence. However, the secondary minima in MinIR that preceded the absolute minima improved this warning time by more than 10 min. Trends in MinIR for time scales shorter than 6 min revealed shorter cycles of fast cooling and warming, which provided information about the lifecycle of updrafts within the storm. The advantages of using observations with high‐temporal resolution to analyze the evolution and intensity of convective storms are discussed.

     
    more » « less
  2. Abstract

    Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.

     
    more » « less
  3. Abstract The Sierras de Córdoba (SDC) range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly low-level jet (LLJ), and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using Cloud Model 1 (CM1). The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. The simulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge. 
    more » « less
  4. Abstract Sierras de Córdoba (Argentina) is characterized by the occurrence of extreme precipitation events during the austral warm season. Heavy precipitation in the region has a large societal impact, causing flash floods. This motivates the forecast performance evaluation of 24-h accumulated precipitation and vertical profiles of atmospheric variables from different numerical weather prediction (NWP) models with the final aim of helping water management in the region. The NWP models evaluated include the Global Forecast System (GFS), which parameterizes convection, and convection-permitting simulations of the Weather Research and Forecasting (WRF) Model configured by three institutions: University of Illinois at Urbana–Champaign (UIUC), Colorado State University (CSU), and National Meteorological Service of Argentina (SMN). These models were verified with daily accumulated precipitation data from rain gauges and soundings during the RELAMPAGO-CACTI field campaign. Generally all configurations of the higher-resolution WRFs outperformed the lower-resolution GFS based on multiple metrics. Among the convection-permitting WRF Models, results varied with respect to rainfall threshold and forecast lead time, but the WRFUIUC mostly performed the best. However, elevation-dependent biases existed among the models that may impact the use of the data for different applications. There is a dry (moist) bias in lower (upper) pressure levels which is most pronounced in the GFS. For Córdoba an overestimation of the northern flow forecasted by the NWP configurations at lower levels was encountered. These results show the importance of convection-permitting forecasts in this region, which should be complementary to the coarser-resolution global model forecasts to help various users and decision-makers. 
    more » « less
  5. This study compared drop size distribution (DSD) measurements on the surface, the corresponding properties, and the precipitation modes among three deep convective regions within the Americas. The measurement compilation corresponded to two sites in the midlatitudes: the U.S. Southern Great Plains and Córdoba Province in subtropical South America, as well as to one site in the tropics: Manacapuru in central Amazonia; these are all areas where intense rain-producing systems contribute to the majority of rainfall in the Americas’ largest river basins. This compilation included two types of disdrometers (Parsivel and 2D-Video Disdrometer) that were used at the midlatitude sites and one type of disdrometer (Parsivel) that was deployed at the tropical site. The distributions of physical parameters (such as rain rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw) for the raindrop spectra without rainfall mode classification seemed similar, except for the much broader Nw distributions in Córdoba. The raindrop spectra were then classified into a light precipitation mode and a precipitation mode by using a cutoff at 0.5 mm h−1 based on previous studies that characterized the full drop size spectra. These segregated rain modes are potentially unique relative to previously studied terrain-influenced sites. In the light precipitation and precipitation modes, the dominant higher frequency observed in a broad distribution of Nw in both types of disdrometers and the identification of shallow light precipitation in vertically pointing cloud radar data represent unique characteristics of the Córdoba site relative to the others. As a result, the co-variability between the physical parameters of the DSD indicates that the precipitation observed in Córdoba may confound existing methods of determining the rain type by using the drop size distribution. 
    more » « less
  6. null (Ed.)
    Abstract Sexual harassment in field settings brings unique challenges for prevention and response, as field research occurs outside “typical” workplaces, often in remote locations that create additional safety concerns and new team dynamics. We report on a project that has 1) trained field project participants to recognize, report, and confront sexual harassment, and 2) investigated the perceptions, attitudes, and experiences of field researchers regarding sexual harassment. Pre-campaign surveys from four major, multi-institutional, domestic and international field projects indicate that the majority of sexual harassment reported prior to the field campaigns was hostile work environment harassment, and women were more likely to be the recipients, on average reporting 2-3 incidents each. The majority of those disclosing harassment indicated that they coped with past experiences by avoiding their harasser or downplaying incidents. Of the incidences reported (47) in post-campaign surveys of the four field teams, all fell under the category of hostile work environment and included incidents of verbal, visual, and physical harassment. Women’s harassment experiences were perpetrated by men 100% of the time, and the majority of the perpetrators were in more senior positions than the victims. Men’s harassment experiences were perpetrated by a mix of women and men, and the majority came from those at the same position of seniority. Post-project surveys indicate that the training programs (taking place before the field projects) helped participants come away with more positive than negative emotions and perceptions of the training, the leadership, and their overall experiences on the field campaign. 
    more » « less
  7. null (Ed.)
    Abstract This article provides an overview of the Advanced Study Institute: Field Studies of Convection in Argentina (ASI-FSCA) program, a 3-week dynamic and collaborative hands-on experience that allowed 16 highly motivated and diverse graduate students from the U.S. to participate in the 2018-19 Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This program is unique as it represents the first effort to integrate an intensive Advanced Study Institute with a field campaign in atmospheric science. ASI-FSCA activities and successful program outcomes for five key elements are described: (1) Intensive field research with field campaign instrumentation platforms; (2) Recruitment of diverse graduate students who would not otherwise have opportunities to participate in intensive field research; (3) Tailored curriculum focused on scientific understanding of cloud and mesoscale processes and professional/academic development topics; (4) Outreach to local K-12 schools and the general public; and (5) Building a collaborative international research network to promote weather and climate research. These five elements served to increase motivation and improve confidence and self-efficacy of students to participate in scientific research and field work with goals of increasing retention and a sense of belonging in STEM graduate programs and advancing the careers of students from underrepresented groups as evidenced by a formal program evaluation effort. Given the success of the ASI-FSCA program, our team strongly recommends considering this model for expanding the opportunities for a broader and more diverse student community to participate in dynamic and intensive field work in atmospheric science. 
    more » « less