We develop a progressive training approach for neural networks which adaptively grows the network structure by splitting existing neurons to multiple off-springs. By leveraging a functional steepest descent idea, we derive a simple criterion for deciding the best subset of neurons to split and a splitting gradient for optimally updating the off-springs. Theoretically, our splitting strategy is a second-order functional steepest descent for escaping saddle points in an infty-Wasserstein metric space, on which the standard parametric gradient descent is a first-order steepest descent. Our method provides a new computationally efficient approach for optimizing neural network structures, especially for learning lightweight neural architectures in resource-constrained settings.
more »
« less
Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks
We propose firefly neural architecture descent, a general framework for progressively and dynamically growing neural networks to jointly optimize the networks' parameters and architectures. Our method works in a steepest descent fashion, which iteratively finds the best network within a functional neighborhood of the original network that includes a diverse set of candidate network structures. By using Taylor approximation, the optimal network structure in the neighborhood can be found with a greedy selection procedure. We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures that avoid catastrophic forgetting in continual learning. Empirically, firefly descent achieves promising results on both neural architecture search and continual learning. In particular, on a challenging continual image classification task, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
more »
« less
- NSF-PAR ID:
- 10276248
- Date Published:
- Journal Name:
- Conference on Neural Information Processing Systems (NeurIPS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper identifies a structural property of data distributions that enables deep neural networks to learn hierarchically. We define the ``staircase'' property for functions over the Boolean hypercube, which posits that high-order Fourier coefficients are reachable from lower-order Fourier coefficients along increasing chains. We prove that functions satisfying this property can be learned in polynomial time using layerwise stochastic coordinate descent on regular neural networks -- a class of network architectures and initializations that have homogeneity properties. Our analysis shows that for such staircase functions and neural networks, the gradient-based algorithm learns high-level features by greedily combining lower-level features along the depth of the network. We further back our theoretical results with experiments showing that staircase functions are learnable by more standard ResNet architectures with stochastic gradient descent. Both the theoretical and experimental results support the fact that the staircase property has a role to play in understanding the capabilities of gradient-based learning on regular networks, in contrast to general polynomial-size networks that can emulate any Statistical Query or PAC algorithm, as recently shown.more » « less
-
The prosperity of deep learning and automated machine learning (AutoML) is largely rooted in the development of novel neural networks -- but what defines and controls the "goodness" of networks in an architecture space? Test accuracy, a golden standard in AutoML, is closely related to three aspects: (1) expressivity (how complicated functions a network can approximate over the training data); (2) convergence (how fast the network can reach low training error under gradient descent); (3) generalization (whether a trained network can be generalized from the training data to unseen samples with low test error). However, most previous theory papers focus on fixed model structures, largely ignoring sophisticated networks used in practice. To facilitate the interpretation and understanding of the architecture design by AutoML, we target connecting a bigger picture: how does the architecture jointly impact its expressivity, convergence, and generalization? We demonstrate the "no free lunch" behavior in networks from an architecture space: given a fixed budget on the number of parameters, there does not exist a single architecture that is optimal in all three aspects. In other words, separately optimizing expressivity, convergence, and generalization will achieve different networks in the architecture space. Our analysis can explain a wide range of observations in AutoML. Experiments on popular benchmarks confirm our theoretical analysis. Our codes are attached in the supplement.more » « less
-
Recurrent neural networks (RNNs) have been successfully used on a wide range of sequential data problems. A well known difficulty in using RNNs is the vanishing or exploding gradient problem. Recently, there have been several different RNN architectures that try to mitigate this issue by maintaining an orthogonal or unitary recurrent weight matrix. One such architecture is the scaled Cayley orthogonal recurrent neural network (scoRNN) which parameterizes the orthogonal recurrent weight matrix through a scaled Cayley transform. This parametrization contains a diagonal scaling matrix consisting of positive or negative one entries that can not be optimized by gradient descent. Thus the scaling matrix is fixed before training and a hyperparameter is introduced to tune the matrix for each particular task. In this paper, we develop a unitary RNN architecture based on a complex scaled Cayley transform. Unlike the real orthogonal case, the transformation uses a diagonal scaling matrix consisting of entries on the complex unit circle which can be optimized using gradient descent and no longer requires the tuning of a hyperparameter. We also provide an analysis of a potential issue of the modReLU activiation function which is used in our work and several other unitary RNNs. In the experiments conducted, the scaled Cayley unitary recurrent neural network (scuRNN) achieves comparable or better results than scoRNN and other unitary RNNs without fixing the scaling matrix.more » « less
-
Loh, Po-ling ; Raginsky, Maxim (Ed.)Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form f⋆(x)=g(Ux) where U:\Rd→\Rr with d≫r. When the degree of f⋆ is p, it is known that n≍dp samples are necessary to learn f⋆ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to f⋆. This results in an improved sample complexity of n≍d2 and enables transfer learning with sample complexity independent of d.more » « less