skip to main content


Search for: All records

Award ID contains: 2041327

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We propose MaxUp, an embarrassingly simple, highly effective technique for improving the generalization performance of machine learning models, especially deep neural networks. The idea is to generate a set of augmented data with some random perturbations or transforms and minimize the maximum, or worst case loss over the augmented data. By doing so, we implicitly introduce a smoothness or robustness regularization against the random perturbations, and hence improve the generation performance. For example, in the case of Gaussian perturbation, MaxUp is asymptotically equivalent to using the gradient norm of the loss as a penalty to encourage smoothness. We test MaxUp on a range of tasks, including image classification, language modeling, and adversarial certification, on which MaxUp consistently outperforms the existing best baseline methods, without introducing substantial computational overhead. In particular, we improve ImageNet classification from the state-of-the-art top-1 accuracy 85.5% without extra data to 85.8%. Code will be released soon. 
    more » « less
  3. Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show that the standard data augmentation methods may introduce distribution shift and consequently hurt the performance on unaugmented data during inference. To alleviate this issue, we propose a simple yet effective approach, dubbed KeepAugment, to increase the fidelity of augmented images. The idea is to use the saliency map to detect important regions on the original images and preserve these informative regions during augmentation. This information-preserving strategy allows us to generate more faithful training examples. Empirically, we demonstrate that our method significantly improves upon a number of prior art data augmentation schemes, e.g. AutoAugment, Cutout, random erasing, achieving promising results on image classification, semi-supervised image classification, multi-view multi-camera tracking and object detection. 
    more » « less
  4. Semi-supervised learning (SSL) is a key approach toward more data-efficient machine learning by jointly leverage both labeled and unlabeled data. We propose AlphaMatch, an efficient SSL method that leverages data augmentations, by efficiently enforcing the label consistency between the data points and the augmented data derived from them. Our key technical contribution lies on: 1) using alpha-divergence to prioritize the regularization on data with high confidence, achieving a similar effect as FixMatch but in a more flexible fashion, and 2) proposing an optimization-based, EM-like algorithm to enforce the consistency, which enjoys better convergence than iterative regularization procedures used in recent SSL methods such as FixMatch, UDA, and MixMatch. AlphaMatch is simple and easy to implement, and consistently outperforms prior arts on standard benchmarks, e.g. CIFAR-10, SVHN, CIFAR-100, STL-10. Specifically, we achieve 91.3 data per class, substantially improving over the previously best 88.7 achieved by FixMatch. 
    more » « less
  5. We consider the post-training quantization problem, which discretizes the weights of pre-trained deep neural networks without re-training the model. We propose multipoint quantization, a quantization method that approximates a full-precision weight vector using a linear combination of multiple vectors of low-bit numbers; this is in contrast to typical quantization methods that approximate each weight using a single low precision number. Computationally, we construct the multipoint quantization with an efficient greedy selection procedure, and adaptively decides the number of low precision points on each quantized weight vector based on the error of its output. This allows us to achieve higher precision levels for important weights that greatly influence the outputs, yielding an 'effect of mixed precision' but without physical mixed precision implementations (which requires specialized hardware accelerators). Empirically, our method can be implemented by common operands, bringing almost no memory and computation overhead. We show that our method outperforms a range of state-of-the-art methods on ImageNet classification and it can be generalized to more challenging tasks like PASCAL VOC object detection. 
    more » « less
  6. We propose a new Stein self-repulsive dynamics for obtaining diversified samples from intractable un-normalized distributions. Our idea is to introduce Stein variational gradient as a repulsive force to push the samples of Langevin dynamics away from the past trajectories. This simple idea allows us to significantly decrease the auto-correlation in Langevin dynamics and hence increase the effective sample size. Importantly, as we establish in our theoretical analysis, the asymptotic stationary distribution remains correct even with the addition of the repulsive force, thanks to the special properties of the Stein variational gradient. We perform extensive empirical studies of our new algorithm, showing that our method yields much higher sample efficiency and better uncertainty estimation than vanilla Langevin dynamics. 
    more » « less
  7. We propose firefly neural architecture descent, a general framework for progressively and dynamically growing neural networks to jointly optimize the networks' parameters and architectures. Our method works in a steepest descent fashion, which iteratively finds the best network within a functional neighborhood of the original network that includes a diverse set of candidate network structures. By using Taylor approximation, the optimal network structure in the neighborhood can be found with a greedy selection procedure. We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures that avoid catastrophic forgetting in continual learning. Empirically, firefly descent achieves promising results on both neural architecture search and continual learning. In particular, on a challenging continual image classification task, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods. 
    more » « less