skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The staircase property: How hierarchical structure can guide deep learning
This paper identifies a structural property of data distributions that enables deep neural networks to learn hierarchically. We define the ``staircase'' property for functions over the Boolean hypercube, which posits that high-order Fourier coefficients are reachable from lower-order Fourier coefficients along increasing chains. We prove that functions satisfying this property can be learned in polynomial time using layerwise stochastic coordinate descent on regular neural networks -- a class of network architectures and initializations that have homogeneity properties. Our analysis shows that for such staircase functions and neural networks, the gradient-based algorithm learns high-level features by greedily combining lower-level features along the depth of the network. We further back our theoretical results with experiments showing that staircase functions are learnable by more standard ResNet architectures with stochastic gradient descent. Both the theoretical and experimental results support the fact that the staircase property has a role to play in understanding the capabilities of gradient-based learning on regular networks, in contrast to general polynomial-size networks that can emulate any Statistical Query or PAC algorithm, as recently shown.  more » « less
Award ID(s):
2031883
PAR ID:
10344265
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantized deep neural networks (QDNNs) are attractive due to their much lower memory storage and faster inference speed than their regular full-precision counterparts. To maintain the same performance level especially at low bit-widths, QDNNs must be retrained. Their training involves piece-wise constant activation functions and discrete weights; hence, mathematical challenges arise. We introduce the notion of coarse gradient and propose the blended coarse gradient descent (BCGD) algorithm, for training fully quantized neural networks. Coarse gradient is generally not a gradient of any function but an artificial ascent direction. The weight update of BCGD goes by coarse gradient correction of a weighted average of the full-precision weights and their quantization (the so-called blending), which yields sufficient descent in the objective value and thus accelerates the training. Our experiments demonstrate that this simple blending technique is very effective for quantization at extremely low bit-width such as binarization. In full quantization of ResNet-18 for ImageNet classification task, BCGD gives 64.36% top-1 accuracy with binary weights across all layers and 4-bit adaptive activation. If the weights in the first and last layers are kept in full precision, this number increases to 65.46%. As theoretical justification, we show convergence analysis of coarse gradient descent for a two-linear-layer neural network model with Gaussian input data and prove that the expected coarse gradient correlates positively with the underlying true gradient. 
    more » « less
  2. We prove the first superpolynomial lower bounds for learning one-layer neural networks with respect to the Gaussian distribution using gradient descent. We show that any classifier trained using gradient descent with respect to square-loss will fail to achieve small test error in polynomial time given access to samples labeled by a one-layer neural network. For classification, we give a stronger result, namely that any statistical query (SQ) algorithm (including gradient descent) will fail to achieve small test error in polynomial time. Prior work held only for gradient descent run with small batch sizes, required sharp activations, and applied to specific classes of queries. Our lower bounds hold for broad classes of activations including ReLU and sigmoid. The core of our result relies on a novel construction of a simple family of neural networks that are exactly orthogonal with respect to all spherically symmetric distributions. 
    more » « less
  3. It is currently known how to characterize functions that neural networks can learn with SGD for two extremal parametrizations: neural networks in the linear regime, and neural networks with no structural constraints. However, for the main parametrization of interest —non-linear but regular networks— no tight characterization has yet been achieved, despite significant developments. We take a step in this direction by considering depth-2 neural networks trained by SGD in the mean-field regime. We consider functions on binary inputs that depend on a latent low-dimensional subspace (i.e., small number of coordinates). This regime is of interest since it is poorly under- stood how neural networks routinely tackle high-dimensional datasets and adapt to latent low- dimensional structure without suffering from the curse of dimensionality. Accordingly, we study SGD-learnability with O(d) sample complexity in a large ambient dimension d. Our main results characterize a hierarchical property —the merged-staircase property— that is both necessary and nearly sufficient for learning in this setting. We further show that non-linear training is necessary: for this class of functions, linear methods on any feature map (e.g., the NTK) are not capable of learning efficiently. The key tools are a new “dimension-free” dynamics approximation result that applies to functions defined on a latent space of low-dimension, a proof of global convergence based on polynomial identity testing, and an improvement of lower bounds against linear methods for non-almost orthogonal functions. 
    more » « less
  4. We overview several properties—old and new—of training overparameterized deep networks under the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep homogeneous rectified linear unit networks. We study the convergence to a solution with the absolute minimumρ, which is the product of the Frobenius norms of each layer weight matrix, when normalization by Lagrange multipliers is used together with weight decay under different forms of gradient descent. A main property of the minimizers that bound their expected error for a specific network architecture isρ. In particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better than classical bounds for dense networks. Next, we prove that quasi-interpolating solutions obtained by stochastic gradient descent in the presence of weight decay have a bias toward low-rank weight matrices, which should improve generalization. The same analysis predicts the existence of an inherent stochastic gradient descent noise for deep networks. In both cases, we verify our predictions experimentally. We then predict neural collapse and its properties without any specific assumption—unlike other published proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers is greater for problems that are appropriate for sparse deep architectures such as convolutional neural networks. The reason is that compositionally sparse target functions can be approximated well by “sparse” deep networks without incurring in the curse of dimensionality. 
    more » « less
  5. Meila, Marina; Zhang, Tong (Ed.)
    Stochastic Gradient Descent (SGD) is a popular tool in training large-scale machine learning models. Its performance, however, is highly variable, depending crucially on the choice of the step sizes. Accordingly, a variety of strategies for tuning the step sizes have been proposed, ranging from coordinate-wise approaches (a.k.a. “adaptive” step sizes) to sophisticated heuristics to change the step size in each iteration. In this paper, we study two step size schedules whose power has been repeatedly confirmed in practice: the exponential and the cosine step sizes. For the first time, we provide theoretical support for them proving convergence rates for smooth non-convex functions, with and without the Polyak-Łojasiewicz (PL) condition. Moreover, we show the surprising property that these two strategies are adaptive to the noise level in the stochastic gradients of PL functions. That is, contrary to polynomial step sizes, they achieve almost optimal performance without needing to know the noise level nor tuning their hyperparameters based on it. Finally, we conduct a fair and comprehensive empirical evaluation of real-world datasets with deep learning architectures. Results show that, even if only requiring at most two hyperparameters to tune, these two strategies best or match the performance of various finely-tuned state-of-the-art strategies. 
    more » « less