skip to main content


Title: Effects of Protein Unfolding on Aggregation and Gelation in Lysozyme Solutions
In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic light scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow.  more » « less
Award ID(s):
1856479
NSF-PAR ID:
10276366
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biomolecules
Volume:
10
Issue:
9
ISSN:
2218-273X
Page Range / eLocation ID:
1262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When polyelectrolytes and oppositely-charged multivalent ions are mixed in aqueous solutions, they can self-assemble into an array of soft materials and complex fluids, ranging from micro- and nanoparticles, to coacervates, to macroscopic gels. Here, we describe the formation and useful/interesting properties of two such materials: (1) submicron particles formed via ionotropic gelation of the cationic polysaccharide chitosan with tripolyphosphate (TPP); and (2) coacervates prepared from mixtures of the synthetic polycation poly(allylamine hydrochloride) (PAH) with either TPP or pyrophosphate (PPi). For chitosan/TPP particles (which are widely explored as potential drug carriers) we show how, by inhibiting chitosan/TPP binding, monovalent salt (NaCl) can be used to: (1) drastically slow down the rapid ionotropic gelation process to facilitate the experimental analysis of how these particles form; (2) enhance the stability of these particles to aggregation; and (3) achieve improved control over particle size. Unlike the gel-like chitosan/TPP ionic networks, which are both soft (with 10^3 - 10^4 Pa storage moduli) and water-rich, mixtures of PAH with TPP and PPi form high-modulus, putty-like coacervates with storage moduli above 10^5 Pa and much lower (26 - 40 wt%) water contents. These moduli and water contents evidently reflect the high ionic crosslink densities enabled by the densely-charged and flexible PAH chains, and strong PAH/PPi and PAH/TPP binding (which also imparts these coacervates with long relaxation times). Besides their bulk properties, we show that the coacervates adhere to diverse substrates (both hydrophilic and hydrophobic) and, when used as wet adhesives, deliver short-term tensile adhesion strengths above 10^5 Pa. Further, the dense crosslinking within PAH/PPi and PAH/TPP coacervates makes them strong barriers to solute diffusion and (regardless of the solute-coacervate binding strength) enables them to release small water-soluble molecules over multiple months. These findings suggest that PAH/PPi and PAH/TPP coacervates can provide a simple route to both underwater adhesion and long-term controlled release. 
    more » « less
  2. Cationic glycylalanylglycine (GAG) self-assembles into a gel in a 55 mol% ethanol/45 mol% water mixture. The gel exhibits a network of crystalline fibrils grown to lengths on a 10 −4 –10 −5 m scale (Farrel et al. , Soft Matter , 2016, 12 , 6096–6110). Rheological data are indicative of a rather strong gel with storage moduli in the 10 kPa regime. Spectroscopic data revealed the existence of two gel phases; one forms below T = 15 °C (phase I) while the other one forms in a temperature range between 15 °C and the melting temperature of ca. 35 °C (phase II). We explored the reformation of the cationic GAG gel in 55 mol% ethanol/45 mol% water after thermal annealing by spectroscopic and rheological means. Our data reveal that even a short residence time of 5 minutes in the sol phase at 50 °C produced a delay of the gelation process and a gel of lesser strength. These observations suggest that the residence time at the annealing temperature can be used to adjust the strength of both gel phases. Our spectroscopic data show that the annealing process does not change the chirality of peptide fibrils in the two gel phases and that the initial aggregation state of the reformation process is by far more ordered for phase I than it is for phase II. In the gel phases of GAG/ethanol/water mixtures, ethanol seems to function as a sort of catalyst that enables the self-assembly of the peptide in spite of its low intrinsic propensity for aggregation. 
    more » « less
  3. Abstract We report the thermoresponsive assembly and rheology of an amphiphilic thermosensitive graft copolymer, poly(ethylene glycol)-graft-(poly(vinyl caprolactam)- co -poly(vinyl acetate)) (commercial name Soluplus ® ), which has been investigated for potential biomedical applications. It has received attention due to is ability to solubilize hydrophobic drugs and for its thickening behavior close to body temperature. Through use of the synchrotron at Brookhaven National Lab, and collaboration with the department of energy, the nanoscale structure and properties can be probed in greater detail. Soluplus ® undergoes two structural changes as temperature is increased; the first, a concentration independent change where samples become turbid at 32 °C. Increasing the temperature further causes the formation of physically associated hydrogels. This sol-gel transition is concentration dependent and occurs at 32 °C for 40 wt% samples, and increases to 42 °C for 10 wt% samples. From variable temperature SAXS characterization micelles of 20–25 nm in radius can be seen and maintain their size and packing below 32 °C. A gradual increase in the aggregation of micelles corresponding to a thickening of the material is also observed. Close to and above the gelation temperature, micelles collapse and form a physically associated 3D network. A model is proposed to explain these physical effects, where the poly(vinyl caprolactam) group transitions from the hydrophilic corona at room temperature to the hydrophobic core as temperature is increased. 
    more » « less
  4. Single particle tracking (SPT) of PEG grafted nanoparticles (NPs) was used to examine the gelation of tetra poly(ethylene glycol) (TPEG) succinimidyl glutarate (TPEG-SG) and amine (TPEG-A) terminated 4-armed stars. As concentration was decreased from 40 to 20 mg mL −1 , the onset of network formation, t gel , determined from rheometry increased from less than 2 to 44 minutes. NP mobility increased as polymer concentration decreased in the sol state, but remained diffusive at times past the t gel determined from rheometry. Once in the gel state, NP mobility decreased, became sub-diffusive, and eventually localized in all concentrations. The NP displacement distributions were investigated to gain insight into the nanoscale environment. In these relatively homogeneous gels, the onset of sub-diffusivity was marked by a rapid increase in dynamic heterogeneity followed by a decrease consistent with a homogeneous network. We propose a gelation mechanism in which clusters initially form a heterogeneous structure which fills in to form a fully gelled relatively homogenous network. This work aims to examine the kinetics of TPEG gelation and the homogeneity of these novel gels on the nanometer scale, which will aid in the implementation of these gels in biomedical or filtration applications. 
    more » « less
  5. ABSTRACT

    Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1014–1026

     
    more » « less