skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oscillation modes of strange quark stars with a strangelet crust
We study the non-radial oscillation modes of strange quark stars with a homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses, we identify the high-frequency l=2 spheroidal (f, p) in Newtonian gravity, using the Cowling approximation. The results are compared to the case of homogeneous compact stars such as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity overestimates the mode frequencies of the strange star, as is the case for neutron stars.  more » « less
Award ID(s):
1608959
PAR ID:
10024406
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Compact Stars in the QCD Phase Diagram V
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strange stars ought to exist in the universe according to the strange quark matter hypothesis, which states that matter made of roughly equal numbers of up, down, and strange quarks could be the true ground state of baryonic matter rather than ordinary atomic nuclei. Theoretical models of strange quark matter, such as the standard MIT bag model, the density-dependent quark mass model, or the quasi-particle model, however, appear to be unable to reproduce some of the properties (masses, radii, and tidal deformabilities) of recently observed compact stars. This is different if alternative gravity theory (e.g., non-Newtonian gravity) or dark matter (e.g., mirror dark matter) are considered, which resolve these issues. The possible existence of strange stars could thus provide a clue to new physics, as discussed in this review. 
    more » « less
  2. null (Ed.)
    We study the principal core g-mode oscillation in hybrid stars containing quark matter and find that they have an unusually large frequency range (≈200–600 Hz) compared to ordinary neutron stars or self-bound quark stars of the same mass. Theoretical arguments and numerical calculations that trace this effect to the difference in the behavior of the equilibrium and adiabatic sound speeds in the mixed phase of quarks and nucleons are provided. We propose that the sensitivity of core g-mode oscillations to non-nucleonic matter in neutron stars could be due to the presence of a mixed quark-nucleon phase. Based on our analysis, we conclude that for binary mergers where one or both components may be a hybrid star, the fraction of tidal energy pumped into resonant g-modes in hybrid stars can exceed that of a normal neutron star by a factor of 2 to 3, although resonance occurs during the last stages of inspiral. A self-bound star, on the other hand, has a much weaker tidal overlap with the g-mode. The cumulative tidal phase error in hybrid stars, Δφ ≅ 0.5 rad, is comparable to that from tides in ordinary neutron stars, presenting a challenge in distinguishing between the two cases. However, should the principal g-mode be excited to sufficient amplitude for detection in a postmerger remnant with quark matter in its interior, its frequency would be a possible indication for the existence of non-nucleonic matter in neutron stars. 
    more » « less
  3. David, G.; Garg, P.; Kalweit, A.; Mukherjee, S.; Ullrich, T.; Xu, Z.; Yoo, I.-K. (Ed.)
    In this conference proceeding, we review important theoretical developments related to the production of strangeness in astrophysics. This includes its effects in supernova explosions, neutron stars, and compact-star mergers. We also discuss in detail how the presence of net strangeness affects the deconfinement to quark matter, expected to take place at large densities and/or temperatures. We conclude that a complete description of dense matter containing hyperons and strange quarks is fundamental for the understanding of modern high-energy astrophysics. 
    more » « less
  4. Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models. 
    more » « less
  5. In the first part of this paper, we investigate the possible existence of a structured hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is given to modeling the size of this phase in rotating neutron stars. We use the relativistic mean-field theory to model hadronic matter and the non-local three-flavor Nambu–Jona-Lasinio model to describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor Polyakov–Nambu–Jona-Lasinio model which includes the ’t Hooft (quark flavor mixing) term. It is found that this term leads to non-negligible changes in the particle composition of (proto) neutron stars made of hadron-quark matter. 
    more » « less