Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data with precise control over the properties of the systems under consideration. Here, we augment the extended conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar Gauss-Bonnet theory and numerically implement it in the open-source p code. Despite the resulting elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes, we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients. Published by the American Physical Society2025
more »
« less
This content will become publicly available on June 1, 2026
Relieving Scale Disparity in Binary Black Hole Simulations
is a method of reducing computational burden in numerical relativity simulations of binary black holes in situations where there is a good analytical model of the geometry around (one or both of) the objects. Two such scenarios of relevance in gravitational-wave astronomy are (1) the case of mass-disparate systems, and (2) the early inspiral when the separation is still large. Here we illustrate the utility and flexibility of this technique with simulations of the fully self-consistent radiative evolution in the model problem of a scalar charge orbiting a Schwarzschild black hole under the effect of scalar-field radiation reaction. We explore a range of orbital configurations, including inspirals with large eccentricity (which we follow through to the final plunge and ringdown) and hyperbolic scattering.
more »
« less
- PAR ID:
- 10632262
- Publisher / Repository:
- Physical Review Letters
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 134
- Issue:
- 25
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modeling of the expected signals in extensions of general relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss–Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading −0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from general relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.more » « less
-
A bstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair.more » « less
-
A<sc>bstract</sc> We study black hole linear perturbation theory in a four-dimensional Schwarzschild (anti) de Sitter background. When dealing with apositivecosmological constant, the corresponding spectral problem is solved systematically via the Nekrasov-Shatashvili functions or, equivalently, classical Virasoro conformal blocks. However, this approach can be more complicated to implement for certain perturbations if the cosmological constant isnegative. For these cases, we propose an alternative method to set up perturbation theory for both small and large black holes in an analytical manner. Our analysis reveals a new underlying recursive structure that involves multiple polylogarithms. We focus on gravitational, electromagnetic, and conformally coupled scalar perturbations subject to Dirichlet and Robin boundary conditions. The low-lying modes of the scalar sector of gravitational perturbations and its hydrodynamic limit are studied in detail.more » « less
-
A bstract In two-derivative theories of gravity coupled to matter, charged black holes are self-attractive at large distances, with the force vanishing at zero temperature. However, in the presence of massless scalar fields and four-derivative corrections, zero-temperature black holes no longer need to obey the no-force condition. In this paper, we show how to calculate the long-range force between such black holes. We develop an efficient method for computing the higher-derivative corrections to the scalar charges when the theory has a shift symmetry, and compute the resulting force in a variety of examples. We find that higher-derivative corrected black holes may be self-attractive or self-repulsive, depending on the value of the Wilson coefficients and the VEVs of scalar moduli. Indeed, we find black hole solutions which are both superextremal and self-attractive. Furthermore, we present examples where no choice of higher-derivative coefficients allows for self-repulsive black hole states in all directions in charge space. This suggests that, unlike the Weak Gravity Conjecture, which may be satisfied by the black hole spectrum alone, the Repulsive Force Conjecture requires additional constraints on the spectrum of charged particles.more » « less
An official website of the United States government
