skip to main content


Title: MicrobeAnnotator: a user-friendly, comprehensive functional annotation pipeline for microbial genomes
Abstract Background High-throughput sequencing has increased the number of available microbial genomes recovered from isolates, single cells, and metagenomes. Accordingly, fast and comprehensive functional gene annotation pipelines are needed to analyze and compare these genomes. Although several approaches exist for genome annotation, these are typically not designed for easy incorporation into analysis pipelines, do not combine results from different annotation databases or offer easy-to-use summaries of metabolic reconstructions, and typically require large amounts of computing power for high-throughput analysis not available to the average user. Results Here, we introduce MicrobeAnnotator, a fully automated, easy-to-use pipeline for the comprehensive functional annotation of microbial genomes that combines results from several reference protein databases and returns the matching annotations together with key metadata such as the interlinked identifiers of matching reference proteins from multiple databases [KEGG Orthology (KO), Enzyme Commission (E.C.), Gene Ontology (GO), Pfam, and InterPro]. Further, the functional annotations are summarized into Kyoto Encyclopedia of Genes and Genomes (KEGG) modules as part of a graphical output (heatmap) that allows the user to quickly detect differences among (multiple) query genomes and cluster the genomes based on their metabolic similarity. MicrobeAnnotator is implemented in Python 3 and is freely available under an open-source Artistic License 2.0 from https://github.com/cruizperez/MicrobeAnnotator . Conclusions We demonstrated the capabilities of MicrobeAnnotator by annotating 100 Escherichia coli and 78 environmental Candidate Phyla Radiation (CPR) bacterial genomes and comparing the results to those of other popular tools. We showed that the use of multiple annotation databases allows MicrobeAnnotator to recover more annotations per genome compared to faster tools that use reduced databases and is computationally efficient for use in personal computers. The output of MicrobeAnnotator can be easily incorporated into other analysis pipelines while the results of other annotation tools can be seemingly incorporated into MicrobeAnnotator to generate summary plots.  more » « less
Award ID(s):
1759831
NSF-PAR ID:
10276520
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
22
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hird, Sarah M. (Ed.)
    The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas ( Crocuta crocuta ) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas’ guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host’s life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis. 
    more » « less
  2. Abstract Background

    Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling.

    Results

    We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, community-scale microbial functional networks using a newly defined metric “MW-score” (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.

    Conclusion

    METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 athttps://github.com/AnantharamanLab/METABOLIC.

     
    more » « less
  3. Abstract Background

    The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3′-untranslated region (3′-UTR) of mRNA produces transcripts with shorter or longer 3′-UTR. Often, 3′-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3′-UTR APA is known to modulate translation and provides a mean to regulate gene expression at the post-transcriptional level. Current bioinformatics pipelines have limited capability in profiling 3′-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3′-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3′-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations.

    Methods

    APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3′-UTR transcripts in the RNA-seq data. APA-Scan works in three major steps: (i) calculate the read coverage of the 3′-UTR regions of genes; (ii) identify the potential APA sites and evaluate the significance of the events among two biological conditions; (iii) graphical representation of user specific event with 3′-UTR annotation and read coverage on the 3′-UTR regions. APA-Scan is implemented in Python3. Source code and a comprehensive user’s manual are freely available athttps://github.com/compbiolabucf/APA-Scan.

    Result

    APA-Scan was applied to both simulated and real RNA-seq datasets and compared with two widely used baselines DaPars and APAtrap. In simulation APA-Scan significantly improved the accuracy of 3′-UTR APA identification compared to the other baselines. The performance of APA-Scan was also validated by 3′-end-seq data and qPCR on mouse embryonic fibroblast cells. The experiments confirm that APA-Scan can detect unannotated 3′-UTR APA events and improve genome annotation.

    Conclusion

    APA-Scan is a comprehensive computational pipeline to detect transcriptome-wide 3′-UTR APA events. The pipeline integrates both RNA-seq and 3′-end-seq data information and can efficiently identify the significant events with a high-resolution short reads coverage plots.

     
    more » « less
  4. Abstract Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/. 
    more » « less
  5. Nojiri, Hideaki (Ed.)
    ABSTRACT Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. 
    more » « less