skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is It All about Efficiency? Exploring Students’ Conceptualizations of Sustainability in an Introductory Energy Course
Engineers are increasingly called on to develop sustainable solutions to complex problems. Within engineering, however, economic and environmental aspects of sustainability are often prioritized over social ones. This paper describes how efficiency and sustainability were conceptualized and interrelated by students in a newly developed second-year undergraduate engineering course, An Integrated Approach to Energy. This course took a sociotechnical approach and emphasized modern energy concepts (e.g., renewable energy), current issues (e.g., climate change), and local and personal contexts (e.g., connecting to students’ lived experiences). Analyses of student work and semi-structured interview data were used to explore how students conceptualized sustainability and efficiency. We found that in this cohort (n = 17) students often approached sustainability through a lens of efficiency, believing that if economic and environmental resources were prioritized and optimized, sustainability would be achieved. By exploring sustainability and efficiency together, we examined how dominant discourses that privilege technical over social aspects in engineering can be replicated within an energy context.  more » « less
Award ID(s):
1836504
PAR ID:
10276820
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
13
Issue:
13
ISSN:
2071-1050
Page Range / eLocation ID:
7188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    What do engineering students in 2020 need to know about energy to be successful in the workplace and contribute to addressing society’s issues related to energy? Beginning with this question, we have designed a new course for second-year engineering students. Drawing on the interdisciplinary backgrounds of our diverse team of engineering instructors, we aimed to provide an introduction to energy for all engineering students that challenged the dominant discourse in engineering by valuing students’ lived experiences and bringing in examples situated in different cultural contexts. An Integrated Approach to Energy was offered for the first time in Spring 2020 for 18 students. In this paper, we describe the design of the course including learning objectives, content, and pedagogical approach. We assessed students’ learning using exams and the impact of the overall course using interviews. Students demonstrated achievement of the learning objectives in technical areas. In addition, interviews revealed that they learned about environmental, economic, and social aspects of engineering practice. We intend for this course to serve as a model of engineering as a sociotechnical endeavor by challenging students with scenarios that are technically demanding and require critical thinking about contextual implications. 
    more » « less
  2. Over the last several years the Electrical and Computer Engineering (ECE) program at Bucknell University has established a four-year ‘design thread’ in the curriculum. This six-course sequence utilizes a representational approach, having students frame design challenges through diagrams and drawings before starting to implement solutions. The representations students create provide eight lenses on the design process; several of these lenses capture elements of societal implications and social justice. Within the design course sequence, the third-year particularly emphasizes the larger societal and human contexts of design. A challenge in the third-year course has been having engineering students who are acculturated to quantitative and linear methods of problem solving shift their perspectives to address complex societal topics. In the social sciences such topics are usually described textually with rich qualitative descriptions. In an attempt to engage engineering students, the authors have utilized graphical design representations rather than textual descriptions into the course. Such representations better align with engineering epistemology, potentially making the large body of work in the social sciences more accessible to students. This paper reports on how a particular representation, the system map, has third-year students explore systemic structures and practices that impact design decisions and processes. Students use system maps to identify ways design projects can impact on society in ways that have both positive and potentially negative consequences. Qualitative analysis of student artifacts over five course iterations was used in an action research approach to refine how to effectively integrate system map representations that capture societal issues and address issues of justice. Action research is an iterative methodology that utilizes evidence to improve practice, in this case the improving students’ facility with, and conceptions of, the societal impact of engineering work. This practice-focused paper reports on how system maps can be used in engineering and what supporting practices, e.g. interviews and research, make their use more effective. Ways to utilize system maps specifically, and representations more generally, to connect technical aspects of engineering design to social justice topics and issues are 
    more » « less
  3. In the spring of 2021, the University of San Diego’s Department of Integrated Engineering taught the course, “Integrated Approach to Energy”, the second offering of a new required course, to nine second-year engineering students. The sociotechnical course covered modern energy concepts, with an emphasis on renewable energies and sustainability, and it exposed the students to other ways of being, knowing, and doing that deviated from the dominant masculine Western White colonial discourse. Following the course completion, we interviewed five students by using a semistructured protocol to explore how they perceived of and communicated about engineers and engineering. We sought to identify the takeaways from their course exposure to sustainability and the sociotechnical paradigm, which were central to the course. The findings suggest that the students were beginning to form sociotechnical descriptions, and that they were still developing their understanding and perceptions of engineers and engineering. Moreover, we observed that they were still wrestling with how best to integrate sustainability into those perceptions. There was an a-la-carte feel to the students’ conceptualizations of sustainability as it related to engineering, as in, “you can ‘do’ sustainability with engineering, but do not have to”. We argue that engineering students likely need these pedagogical paradigms (sociotechnical engineering and sustainability) woven through the entirety of their engineering courses if they are to fully accept and integrate them into their own constructs about engineers and engineering. 
    more » « less
  4. Sustainability has increasingly become a more prevalent topic in engineering as the need for global solutions that address the environmental, social, and economic aspects of sustainability have become more pressing. However, few studies have examined students’ sustainability related career outcome expectations for upper-level engineering students, and, in particular, how these interests can be used to broaden participation in engineering. This time point is a critical one as students will be transitioning from college to industry or other careers where they may be positioned to solve pressing problems facing the environment, society, and the economy. To fill this gap, in this paper we answer the question, “What differences exist between men and women’s attitudes about sustainability in upper-level engineering courses?” in order to better understand how sustainability topics may promote women’s interest in and desire to address these needs in their future careers. We used data from a pilot of the CLIMATE survey given to 228 junior and senior civil, environmental, and mechanical engineering students at a large East Cost research institution. We asked the same questions as the previous study focused on first-year engineering students, “Which of these topics, if any, do you hope to directly address in your career?” with a list of ten sustainability outcome expectations. We used Pearson’s Chi-squared test with Yates’ continuity correction to compare men and women’s answers. We found significant gender differences in students’ desire to address energy, terrorism and war, water supply, food availability, and opportunities for woman and/or minorities in their careers. Some of these differences persist from first-year through upper-level classes, as compared to the results from a previous study in first-year students, while others develop during students’ undergraduate education. Our results begin to help us understand the particular differences that men and women, even far along in their undergraduate engineering careers, may have in their desire to address certain sustainability outcomes in their careers. 
    more » « less
  5. PurposeThis study aims to investigate the use of a sociotechnical case study as a means of integrating social and technical dimensions into an undergraduate engineering sustainability technical elective course. Design/methodology/approachThe “Big Wind Project” case study used a microhistory approach to engage students in the complexities of sustainable engineering, aiming to facilitate their exploration of the sociotechnical nature of engineering sustainability projects. Focused on a controversial wind energy project in Hawaii, the Big Wind Project case study served as a pedagogical tool in the course for engaging engineering students in complex sustainability challenges. FindingsThirty-nine students who engaged in the case study lesson responded to questions about their perceptions of the case and the role of stakeholders and other social dimensions in engineering decision-making and agreed that we could use their responses in this research. While many students acknowledged the importance of accounting for social dimensions, their discussions frequently reflected a persistent tendency of engineering work to view outcomes through a dualistic technical-vs-social lens rather than an integrated sociotechnical lens. Originality/valueThis study examined how a case study reveals and supports students’ navigation of the complexities of sociotechnical engineering sustainability work. 
    more » « less