The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array.
more »
« less
The Effect of UV Illumination on the Room Temperature Detection of Vaporized Ammonium Nitrate by a ZnO Coated Nanospring-Based Sensor
The effect of UV illumination on the room temperature electrical detection of ammonium nitrate vapor was examined. The sensor consists of a self-assembled ensemble of silica nanosprings coated with zinc oxide. UV illumination mitigates the baseline drift of the resistance relative to operation under dark conditions. It also lowers the baseline resistance of the sensor by 25% compared to dark conditions. At high ammonium nitrate concentrations (120 ppm), the recovery time after exposure is virtually identical with or without UV illumination. At low ammonium nitrate concentrations (20 ppm), UV illumination assists with refreshing of the sensor by stimulating analyte desorption, thereby enabling the sensor to return to its baseline resistance. Under dark conditions and low ammonium nitrate concentrations, residual analyte builds up with each exposure, which inhibits the sensor from returning to its original baseline resistance and subsequently impedes sensing due to permanent occupation of absorption sites.
more »
« less
- Award ID(s):
- 1911370
- PAR ID:
- 10276843
- Date Published:
- Journal Name:
- Materials
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A prototype aerosol detection system is presented that is designed to accurately and quickly measure the concentration of selected inorganic ions in the atmosphere. The aerosol detection system combines digital microfluidics technology, aerosol impaction and chemical detection integrated on the same chip. Target compounds are the major inorganic aerosol constituents: sulfate, nitrate and ammonium. The digital microfluidic system consists of top and bottom plates that sandwich a fluid layer. Nozzles for an inertial impactor are built into the top plate according to known, scaling principles. The deposited air particles are densely concentrated in well-defined deposits on the bottom plate containing droplet actuation electrodes of the chip in fixed areas. The aerosol collection efficiency for particles larger than 100 nm in diameter was higher than 95%. After a collection phase, deposits are dissolved into a scanning droplet. Due to a sub-microliter droplet size, the obtained extract is highly concentrated. Droplets then pass through an air/oil interface on chip for colorimetric analysis by spectrophotometry using optical fibers placed between the two plates of the chip. To create a standard curve for each analyte, six different concentrations of liquid standards were chosen for each assay and dispensed from on-chip reservoirs. The droplet mixing was completed in a few seconds and the final droplet was transported to the detection position as soon as the mixing was finished. Limits of detection (LOD) in the final droplet were determined to be 11 ppm for sulfate and 0.26 ppm for ammonium. For nitrate, it was impossible to get stable measurements. The LOD of the on-chip measurements for sulfate was close to that obtained by an off-chip method using a Tecan spectrometer. LOD of the on-chip method for ammonium was about five times larger than what was obtained with the off-chip method. For the current impactor collection air flow (1 L/min) and 1 h collection time, the converted LODs in air were: 0.275 μg/m3 for sulfate, 6.5 ng/m3 for ammonium, sufficient for most ambient air monitoring applications.more » « less
-
Nitrate (NO3) pollution in groundwater, caused by various factors both natural and synthetic, contributes to the decline of human health and well-being. Current techniques used for nitrate detection include spectroscopic, electrochemical, chromatography, and capillary electrophoresis. It is highly desired to develop a simple cost-effective alternative to these complex methods for nitrate detection. Therefore, a real-time poly (3,4-ethylenedioxythiophene) (PEDOT)-based sensor for nitrate ion detection via electrical property change is introduced in this study. Vapor phase polymerization (VPP) is used to create a polymer thin film. Variations in specific parameters during the process are tested and compared to develop new insights into PEDOT sensitivity towards nitrate ions. Through this study, the optimal fabrication parameters that produce a sensor with the highest sensitivity toward nitrate ions are determined. With the optimized parameters, the electrical resistance response of the sensor to 1000 ppm nitrate solution is 41.79%. Furthermore, the sensors can detect nitrate ranging from 1 ppm to 1000 ppm. The proposed sensor demonstrates excellent potential to detect the overabundance of nitrate ions in aqueous solutions in real time.more » « less
-
Abstract The chemical composition of growing media is a key factor for plant growth, impacting agricultural yield and sustainability. However, there is a lack of affordable chemical sensors for ubiquitous nutrient ion monitoring in agricultural applications. This work investigates using fully printed ion‐sensor arrays to measure the concentrations of nitrate, ammonium, and potassium in mixed‐electrolyte media. Ion sensor arrays composed of nitrate, ammonium, and potassium ion‐selective electrodes and a printed silver‐silver chloride (Ag/AgCl) reference electrode are fabricated and characterized in aqueous solutions in a range of concentrations that encompass what is typical for agricultural growing media (0.01 mm–1m). The sensors are also tested in mixed‐electrolyte solutions of NaNO3, NH4Cl, and KCl of varying concentrations, and the recorded potentials are input into Nernstian and artificial neural network models to compare the prediction accuracy of the models against ground truth. The artificial neural network models demonstrated higher accuracy over the Nernstian model, and the model using only ion‐sensor inputs is 7.5% more accurate than the Nernstian model under the same conditions. By enabling more precise and efficient fertilizer application, these sensor arrays coupled to computational models can help increase crop yields, optimize resource use, and reduce environmental impact.more » « less
-
Abstract Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (RWL), and enlarging total sensing area. The captured nitrate ions by the nitrate ISM induce surface potential changes that are transduced into electrical signals by graphene, manifested as the Dirac point shifts. The device exhibits Nernst response behavior under ultralow concentrations, achieving a sensitivity of 28 mV/decade and establishing a record low limit of detection of 0.041 ppt (4.8 × 10−13M). Additionally, the sensor showed a wide linear detection range from 0.1 ppt (1.2 × 10−12M) to 100 ppm (1.2 × 10−3M). Furthermore, successful detection of nitrate in tap and snow water was demonstrated with high accuracy, indicating promising applications to drinking water safety and environmental water quality control.more » « less
An official website of the United States government

