skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fully‐Printed Ion Sensor Arrays for Measuring Agricultural Nitrogen and Potassium Concentrations Using Nernstian and AI Models
Abstract The chemical composition of growing media is a key factor for plant growth, impacting agricultural yield and sustainability. However, there is a lack of affordable chemical sensors for ubiquitous nutrient ion monitoring in agricultural applications. This work investigates using fully printed ion‐sensor arrays to measure the concentrations of nitrate, ammonium, and potassium in mixed‐electrolyte media. Ion sensor arrays composed of nitrate, ammonium, and potassium ion‐selective electrodes and a printed silver‐silver chloride (Ag/AgCl) reference electrode are fabricated and characterized in aqueous solutions in a range of concentrations that encompass what is typical for agricultural growing media (0.01 mm–1m). The sensors are also tested in mixed‐electrolyte solutions of NaNO3, NH4Cl, and KCl of varying concentrations, and the recorded potentials are input into Nernstian and artificial neural network models to compare the prediction accuracy of the models against ground truth. The artificial neural network models demonstrated higher accuracy over the Nernstian model, and the model using only ion‐sensor inputs is 7.5% more accurate than the Nernstian model under the same conditions. By enabling more precise and efficient fertilizer application, these sensor arrays coupled to computational models can help increase crop yields, optimize resource use, and reduce environmental impact.  more » « less
Award ID(s):
2329885
PAR ID:
10582345
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Sensor Research
Volume:
4
Issue:
4
ISSN:
2751-1219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low‐cost biosensors that can rapidly and widely monitor plant nutritional levels will be critical for better understanding plant health and improving precision agriculture decision making. In this work, fully printed ion‐selective organic electrochemical transistors (OECTs) that can detect macronutrient concentrations in whole plant sap are described. Potassium, the most concentrated cation in the majority of plants, is selected as the target analyte as it plays a critical role in plant growth and development. The ion sensors demonstrate high current (170 µA dec−1) and voltage (99 mV dec−1) sensitivity, and a low limit of detection (10 × 10−6 m). These OECT biosensors can be used to determine potassium concentration in raw sap and sap‐like aqueous environments demonstrating a log‐linear response within the expected physiological range of cations in plants. The performance of these printed devices enables their use in high‐throughput plant health monitoring in agricultural and ecological applications. 
    more » « less
  2. Abstract Agricultural intensification has increased the use of chemical fertilizers, promoting plant growth and crop yield. Excessive use of nitrogen fertilizers leads to nutrient loss and low nitrogen use efficiency. Management of nitrogen fertilizer input requires close to real‐time information about the soil nitrate concentration. While there is extensive work developing nitrate ion sensing solutions for liquid media, few allow for in‐soil measurements. This study introduces inkjet‐printed potentiometric sensors, containing 2 electrodes, the reference electrode (RE) and the nitrate‐selective film‐encapsulated working electrode (WE). The interaction between the nitrate‐sensitive membrane and soil nitrate ions causes a change in potential across the RE and WE. Additionally, a hydrophilic Polyvinylidene Fluoride (PVDF) layer ensures the long‐term functionality of the sensor in wet soil environments by protecting it from charged soil particles while simultaneously allowing water to flow from the soil toward the sensor electrodes. The sensors are tested in sand and silt loam soil, demonstrating their versatility across soil types. The potential change can be related to the nitrate concentration in soil, with typical sensitivities of 45–55 mV decade−1. Overall, the use of the PVDF layer allows for direct sensing in moist soil environments, which is critical for developing soil nitrate sensors. 
    more » « less
  3. Single particle electrochemical oxidation of polyvinylpyrrolidone-capped silver nanoparticles at a microdisk electrode is investigated as a function of particle shape (spheres, cubes, and plates) in potassium nitrate and potassium hydroxide solutions. In potassium nitrate, extreme anodic potentials (≥1500 mV vs Ag/AgCl (3 M KCl)) are necessary to achieve oxidation, while lower anodic potentials are required in potassium hydroxide (≥900 mV vs Ag/AgCl (saturated KCl)). Upon oxidation, silver oxide is formed, readily catalyzing water oxidation, producing a spike-step current response. The spike duration for each particle is used to probe effects of particle shape on the oxidation mechanism, and is substantially shorter in nitrate solution at the large overpotentials than in hydroxide solution. The integration of current spikes indicates oxidation to a mixed-valence complex. In both electrolytes, the rate of silver oxidation strongly depends on silver content of the nanoparticles, rather than the shape-dependent variable–surface area. The step height, which reflects rate of water oxidation, also tracks the silver content more so than shape. The reactivity of less-protected citrate-capped particles toward silver oxidation is also compared with that of the polymer-capped particles under these anodic conditions in the nitrate and hydroxide solutions. 
    more » « less
  4. null (Ed.)
    We fabricated and evaluated multiplexed ion-selective electrodes (ISEs) by modifying printed circuit board (PCB). The multiplexed sensor consisted of all-solid-state K+ and NO3- ISEs, together with a Ag/AgCl reference. The sensor was further embedded in a microfluidic microchannel for in-line continuous analysis, and was characterized for up to one week of operation. Both ISEs showed a near-Nernstian response (~52 mV/dec) and reasonable stabilities (baseline drift ~2.9 mV/day). The sensor provides a versatile and low-cost tool for monitoring concentrations of different ions in many biomedical, environmental and agricultural applications. 
    more » « less
  5. Currently available point‐of‐care systems for body fluid collection exhibit poor integration with sensors. Herein, the design of a disposable device for interstitial fluid (ISF) extraction as well as glucose, lactate, and potassium ion (K+) monitoring is reported on. It is minimally invasive and appropriate for single use, minimizing the risk of infection to the user. This microscale device contains a 3D‐printed cap‐like structure with a four‐by‐four microneedle (MN) array, bioreceptor‐modified carbon fiber (CF)‐sensing surface, and negative pressure convection technology. These features are incorporated within a compact, self‐contained, and manually operated microscale device, which is capable of withdrawing ≈3.0 μL of ISF from the skin. MN arrays applied with an upward driving force may increase the ISF flow rate. Moreover, functionalized CF working electrodes (WE1, WE2, WE3) are shown to selectively detect lactate, glucose, and K+with high sensitivities of 0.258, 0.549, and 0.657 μA μm−1 cm−2and low detection limits of 0.01, 0.080, 0.05 μm, respectively. Ex vivo testing on porcine skin is used to detect the ISF levels of the biomarkers. The microscale device can be a replacement for current point‐of‐care diagnostic approaches. 
    more » « less