skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Design and novel turn-off mechanism in transistor lasers
We provide a quantitative analysis of the spontaneous recombination time in the quantum well (QW) of a transistor laser (TL) that shows that owing to the heavy doping in the base of the transistor, Auger recombination is responsible for the short carrier lifetime and low quantum efficiency of the device. By taking advantage of the QW location close to the collector in the TL three-terminal configuration, we devise a new turn-off mechanism that results in quick electron tunneling through the QW barrier by applying a high base-collector reverse bias to deplete the QW and suppress further recombination. For practical base-collector reverse bias, tunneling time from the QW is on the order of 10th of picosecond, which with a lighter base doping density would simultaneously achieve a fast TL turn-off response, while reducing Auger recombination.  more » « less
Award ID(s):
1640196
PAR ID:
10276918
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
JPhys photonics
Volume:
3
Issue:
3
ISSN:
2515-7647
Page Range / eLocation ID:
034018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ma, Shixin ; Li, Xiangdong (Ed.)

    Bistability in the current–voltage characteristics of semiconductor superlattices and quantum cascade laser structures has the potential for wide-ranging applications, particularly in sensing systems. However, the interdependency of applied bias and current injection in conventional two-terminal structures has led to complications in analysis and rendered the bistability phenomenon difficult to implement in practical applications. Here, we report a new kind of electronic bistability coupled to optical switching in a resonant tunneling bipolar superlattice transistor. This bistability manifests as sharp discontinuities in the collector current with extremely small variations of the applied voltage, which arise from unstable tunneling transmission across the hetero-barrier between the two-dimensional electron gas (2DEG) at the edge of the transistor base and the collector superlattice structure. The electronic transitions between high and low quantum mechanical transmissions are demonstrated to be caused by self-consistent variations of the internal electric field at the heterointerface between the 2DEG and the superlattice. They are also present in the base current of the three-terminal device and result in sharp switching of near-infrared spontaneous light emission output from an interband radiative recombination process with a peak emission wavelength of 1.58 μm. A comprehensive quantum mechanical theoretical model accounting for the self-consistent bistable tunneling transmission is in quantitative agreement with the experimental data. The measured peak transconductance sensitivity value of 6000 mS can be used in the highly sensitive detector and non-linear device applications.

     
    more » « less
  2. Research in Organic Permeable Base Transistors (OPBTs) has led to a significant increase in their performance. However, despite this progress, understanding of the working mechanism of OPBTs is still limited. Although first numerical models of OPBTs are able to describe the switching mechanism of OPBTs correctly, they neglect currents injected at the base electrode, which leads to unrealistically low off-currents and high ON/OFF ratios. Here, a tunneling model is developed that is capable of describing injection of charges through a thin oxide layer formed around the base electrode of OPBTs. With the help of this injection model, the performance of the base-collector diode of OPBTs is discussed. In particular, the model is used to explain the reduction in backward currents due to an exposure to ambient air by an increase in the thickness of the oxide layer. Furthermore, the tunnel model is used to show that the reduction in backward currents of the base-collector diode leads to a decrease in off-currents of complete OPBTs, which in turn leads to an increase in their ON/OFF ratio. 
    more » « less
  3. Abstract

    Resonant tunneling is a quantum‐mechanical effect in which electron transport is controlled by the discrete energy levels within a quantum‐well (QW) structure. A ferroelectric resonant tunneling diode (RTD) exploits the switchable electric polarization state of the QW barrier to tune the device resistance. Here, the discovery of robust room‐temperature ferroelectric‐modulated resonant tunneling and negative differential resistance (NDR) behaviors in all‐perovskite‐oxide BaTiO3/SrRuO3/BaTiO3QW structures is reported. The resonant current amplitude and voltage are tunable by the switchable polarization of the BaTiO3ferroelectric with the NDR ratio modulated by ≈3 orders of magnitude and an OFF/ON resistance ratio exceeding a factor of 2 × 104. The observed NDR effect is explained an energy bandgap between Ru‐t2gand Ru‐egorbitals driven by electron–electron correlations, as follows from density functional theory calculations. This study paves the way for ferroelectric‐based quantum‐tunneling devices in future oxide electronics.

     
    more » « less
  4.  
    more » « less
  5. Morkoç, Hadis ; Fujioka, Hiroshi ; Schwarz, Ulrich T. (Ed.)
    Efficient high-power operation of light emitting diodes based on InGaN quantum wells (QWs) requires rapid interwell hole transport and low nonradiative recombination. The transport rate can be increased by replacing GaN barriers with that of InGaN. Introduction of InGaN barriers, however, increases the rate of the nonradiative recombination. In this work, we have attempted to reduce the negative impact of the nonradiative recombination by introducing thin GaN or AlGaN interlayers at the QW/barrier interfaces. The interlayers, indeed, reduce the nonradiative recombination rate and increase the internal quantum efficiency by about 10%. Furthermore, the interlayers do not substantially slow down the interwell hole transport; for 0.5 nm Al0.10Ga0.90N interlayers the transport rate has even been found to increase. Another positive feature of the interlayers is narrowing of the QW PL linewidth, which is attributed to smoother QW interfaces and reduced fluctuations of the QW width. 
    more » « less