The first two harmonics of a microwave frequency comb (MFC) were measured at a probe which must be within 1 mm of the tunneling junction at the surface of a semiconductor as the sample electrode in a scanning tunneling microscope. The MFC was generated using a passively mode-locked Ti:Sapphire laser with GaN, but lasers with lower photon energy would be required with silicon. The attenuation of the MFC is primarily caused by the spreading resistance in a sub-nm spot at the tunneling junction. Thus, the measured attenuation could be used to determine the carrier density at this spot as an extension of scanning spreading resistance microscopy (SSRM). We anticipate that this effect will enable new nondestructive methods for sub-nm carrier profiling of semiconductors.
more »
« less
Probing Local Emission Properties in InGaN/GaN Quantum Wells by Scanning Tunneling Luminescence Microscopy
Scanning tunneling electroluminescence (STL) microscopy is performed on a 3 nm‐thick InGaN/GaN quantum well (QW) with [In] = 0.23 such that the main light emission occurs in the green. The technique is used to map the radiative recombination properties at a scale of a few nanometers and correlate the local electroluminescence map with the surface topography simultaneously imaged by scanning tunneling microscopy. While the expected green emission is observed all over the sample, measurements performed on a 500 nm × 500 nm area around a 150 nm‐large and 2.5 nm‐deep hexagonal defect reveal intense emission peaks at higher energies close to the defect edges, features which are not visible in the macrophotoluminescence spectrum of the sample. Via a fitting of the local tunneling electroluminescence spectra, quantitative information on the fluctuations of the intensity, peak energy, width, and phonon replica intensity of the different spectral contributions is obtained, which provides information on carrier localization in the QW. This procedure also indicates that the carrier diffusion length on the probed area of the QW is shorter than 50 nm.
more »
« less
- Award ID(s):
- 1839077
- PAR ID:
- 10379565
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (b)
- Volume:
- 260
- Issue:
- 5
- ISSN:
- 0370-1972
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Finer resolution with greater stability is possible using unique low-power (aW), low-noise (20 dB S/N), microwave harmonics generated within a nanoscale tip-sample junction for feedback control in place of the DC tunneling current. Please see the attached poster to be presented at the Microscopy & Microanalysis-2018 meeting in Baltimore Monday August 6th as Post-deadline poster PDP-18. Applications include true sub-nm resolution in the carrier profiling of semiconductors. This method is especially appropriate for resistive samples where the spreading resistance flattens plots of the tunneling current vs. tip-sample distance with a scanning tunneling microscope.more » « less
-
Abstract Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μ m of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.more » « less
-
Summary form only given. We are developing a scanning tunneling microscope that is portable and optimized for scanning frequency comb microscopy (SFCM) as one part of our effort to complete a prototype for the carrier profiling of semiconductors by SFCM. Conventional integral or integral plus proportion feedback control of the tunneling current in a scanning tunneling microscope (STM) is satisfactory once tunneling has been established but may cause tip-crash by integral windup during coarse approach. In tip-sample contact images with atomic-resolution may be obtained but the microwave frequency comb ceases because there is no optical rectification and scanning tunneling spectroscopy also fails. We are studying a new control algorithm based on approximating the tunneling current as a polynomial in the bias voltage where the coefficients in this polynomial are not required. It is noted that hanges in the apparatus, as well as the algorithms used for feedback control in the STM, are required to optimize this instrument for measuring the microwave frequency comb.more » « less
-
null (Ed.)We provide a quantitative analysis of the spontaneous recombination time in the quantum well (QW) of a transistor laser (TL) that shows that owing to the heavy doping in the base of the transistor, Auger recombination is responsible for the short carrier lifetime and low quantum efficiency of the device. By taking advantage of the QW location close to the collector in the TL three-terminal configuration, we devise a new turn-off mechanism that results in quick electron tunneling through the QW barrier by applying a high base-collector reverse bias to deplete the QW and suppress further recombination. For practical base-collector reverse bias, tunneling time from the QW is on the order of 10th of picosecond, which with a lighter base doping density would simultaneously achieve a fast TL turn-off response, while reducing Auger recombination.more » « less
An official website of the United States government
