skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Throughput Functional Characterization of Visceral Afferents by Optical Recordings From Thoracolumbar and Lumbosacral Dorsal Root Ganglia
Functional understanding of visceral afferents is important for developing the new treatment to visceral hypersensitivity and pain. The sparse distribution of visceral afferents in dorsal root ganglia (DRGs) has challenged conventional electrophysiological recordings. Alternatively, Ca 2+ indicators like GCaMP6f allow functional characterization by optical recordings. Here we report a turnkey microscopy system that enables simultaneous Ca 2+ imaging at two parallel focal planes from intact DRG. By using consumer-grade optical components, the microscopy system is cost-effective and can be made broadly available without loss of capacity. It records low-intensity fluorescent signals at a wide field of view (1.9 × 1.3 mm) to cover a whole mouse DRG, with a high pixel resolution of 0.7 micron/pixel, a fast frame rate of 50 frames/sec, and the capability of remote focusing without perturbing the sample. The wide scanning range (100 mm) of the motorized sample stage allows convenient recordings of multiple DRGs in thoracic, lumbar, and sacral vertebrae. As a demonstration, we characterized mechanical neural encoding of visceral afferents innervating distal colon and rectum (colorectum) in GCaMP6f mice driven by VGLUT2 promotor. A post-processing routine is developed for conducting unsupervised detection of visceral afferent responses from GCaMP6f recordings, which also compensates the motion artifacts caused by mechanical stimulation of the colorectum. The reported system offers a cost-effective solution for high-throughput recordings of visceral afferent activities from a large volume of DRG tissues. We anticipate a wide application of this microscopy system to expedite our functional understanding of visceral innervations.  more » « less
Award ID(s):
1844762
PAR ID:
10277190
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Neuroscience
Volume:
15
ISSN:
1662-453X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Afferents of peripheral mechanoreceptors innervate the skin of vertebrates, where they detect physical touch via mechanically gated ion channels (mechanotransducers). While the afferent terminal is generally understood to be the primary site of mechanotransduction, the functional properties of mechanically activated (MA) ionic current generated by mechanotransducers at this location remain obscure. Until now, direct evidence of MA current and mechanically induced action potentials in the mechanoreceptor terminal has not been obtained. Here, we report patch-clamp recordings from the afferent terminal innervating Grandry (Meissner) corpuscles in the bill skin of a tactile specialist duck. We show that mechanical stimulation evokes MA current in the afferent with fast kinetics of activation and inactivation during the dynamic phases of the mechanical stimulus. These responses trigger rapidly adapting firing in the afferent detected at the terminal and in the afferent fiber outside of the corpuscle. Our findings elucidate the initial electrogenic events of touch detection in the mechanoreceptor nerve terminal. 
    more » « less
  2. Abnormal colorectal biomechanics and mechanotransduction associate with an array of gastrointestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, diverticula disease, anorectal disorders, ileus, and chronic constipation. Visceral pain, principally evoked from mechanical distension, has a unique biomechanical component that plays a critical role in mechanotransduction, the process of encoding mechanical stimuli to the colorectum by sensory afferents. To fully understand the underlying mechanisms of visceral mechanical neural encoding demands focused attention on the macro- and micro-mechanics of colon tissue. Motivated by biomechanical experiments on the colon and rectum, increasing efforts focus on developing constitutive frameworks to interpret and predict the anisotropic and nonlinear biomechanical behaviors of the multilayered colorectum. We will review the current literature on computational modeling of the colon and rectum as well as the mechanical neural encoding by stretch sensitive afferent endings, and then highlight our recent advances in these areas. Current models provide insight into organ- and tissue-level biomechanics as well as the stretch-sensitive afferent endings of colorectal tissues yet an important challenge in modeling theory remains. The research community has not connected the biomechanical models to those of mechanosensitive nerve endings to create a cohesive multiscale framework for predicting mechanotransduction from organ-level biomechanics. 
    more » « less
  3. Mechanosensory corpuscles detect transient touch and vibration in the skin of vertebrates, enabling precise sensation of the physical environment. The corpuscle contains a mechanoreceptor afferent surrounded by lamellar cells (LCs), but corpuscular ultrastructure and the role of LCs in touch detection are unknown. We report the three-dimensional architecture of the avian Meissner (Grandry) corpuscle acquired using enhanced focused ion beam scanning electron microscopy and machine learning-based segmentation. The corpuscle comprises a stack of LCs interdigitated with terminal endings from two afferents. Simultaneous electrophysiological recordings from both cell types revealed that mechanosensitive LCs use calcium influx to trigger action potentials in the afferent and thus serve as physiological touch sensors in the skin. The elaborate architecture and bicellular sensory mechanism in the corpuscles, which comprises the afferents and LCs, create the capacity for nuanced encoding of the submodalities of touch. 
    more » « less
  4. ABSTRACT ObjectiveThis study aimed to investigate the potential role of cesium chloride (CsCl), ivabradine (IVA), and isoproterenol (ISO) on the sensory transmission of bladder afferents to graded urinary bladder distension (UBD). We specifically selected these drugs to target the hyperpolarization‐activated cyclic nucleotide‐gated (HCN) cation channels to determine their role in afferent encoding. MethodsThe bladders of C57BL/6 female mice were harvested with attached pelvic nerves in continuity, and the stimulus–response function (SRF) of bladder afferents to stepped bladder distension (20, 40, 60, 80 cmH2O) was recorded by single‐fiber recordings. Their changes in SRF to bath application of CsCl, IVA, and ISO were then evaluated. The presence of HCN on bladder afferent endings was assessed through immunohistological staining on bladder sections from mice with genetically labeled bladder afferents. ResultsIVA and ISO did not significantly reduce afferent responses to UBD, whereas CsCl increased afferent responses. Bladder afferents in the pelvic nerve pathway were categorized into low‐firing (LF, < 10 Hz) and high‐firing (HF, > 10 Hz) groups. SRF in both the LF and HF groups showed similar trends with no significant changes in response to IVA and ISO. CsCl increased SRF only in the HF group but not in the LF group. Immunohistological staining revealed that HCN1 does not extensively co‐localize with afferent endings, showing only sporadic presence. ConclusionOur targeted pharmacological studies with single‐fiber recordings and immunohistological staining collectively suggest that HCN channels do not play a significant role in bladder afferent sensory transmission. 
    more » « less
  5. Abstract Irritable bowel syndrome afflicts 10–20% of the global population, causing visceral pain with increased sensitivity to colorectal distension and normal bowel movements. Understanding and predicting these biomechanics will further advance our understanding of visceral pain and complement the existing literature on visceral neurophysiology. We recently performed a series of experiments at three longitudinal segments (colonic, intermediate, and rectal) of the distal 30 mm of colorectums of mice. We also established and fitted constitutive models addressing mechanical heterogeneity in both the through-thickness and longitudinal directions of the colorectum. Afferent nerve endings, strategically located within the submucosa, are likely nociceptors that detect concentrations of mechanical stresses to evoke the perception of pain from the viscera. In this study, we aim to: (1) establish and validate a method for incorporating residual stresses into models of colorectums, (2) predict the effects of residual stresses on the intratissue mechanics within the colorectum, and (3) establish intratissue distributions of stretches and stresses within the colorectum in vivo. To these ends we developed two-layered, composite finite element models of the colorectum based on our experimental evidence and validated our approaches against independent experimental data. We included layer- and segment-specific residual stretches/stresses in our simulations via the prestrain algorithm built into the finite element software febio. Our models and modeling approaches allow researchers to predict both organ and intratissue biomechanics of the colorectum and may facilitate better understanding of the underlying mechanical mechanisms of visceral pain. 
    more » « less