skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Holistic Engineering: A Concept Exploration in a Cross- Disciplinary Project Course Experience
Holistic engineering is an approach to the engineering profession, rather than an engineering discipline such as civil, electrical, or mechanical engineering. It is inspired by the realization that traditional engineering does not adequately harness professional skills in its problem-solving repertoire. Holistic engineering asks engineers to look outward, beyond the fields of math and science, in search of solutions to entire problems. While engineering graduates are well prepared in the technical aspects of the engineering profession, they lack non-technical professional skills (e.g., strategic communication, social science perspective of engineering problems, and others) that can help them think through diverse social aspects posed by current complex engineering grand challenges. In this paper, we review the concept and origins of holistic engineering and we present an application of this concept in a Holistic Engineering Project Course (HEPC) developed as part of a National Science Foundation (NSF) grant. HEPC is developed in such a way that engineering students work with social science students on a complex and open-ended engineering grand challenge problem. We hypothesize that such collaborations can significantly improve the professional formation of well-rounded, and effective engineers. The paper also draws lessons learned from the first offering of the course, titled Technology Innovations: Engineering, Economics, and Public Relations, which was offered in the spring semester of 2020 in the Wadsworth Department of Civil and Environmental Engineering in coordination with the John Chambers Department of Economics and the Reed College of Media in West Virginia University.  more » « less
Award ID(s):
1927232
PAR ID:
10277333
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 ASEE North Central Section Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The role of modern engineers as problem-definer often require collaborating with cross-disciplinary teams of professionals to understand and effectively integrate the role of other disciplines and accelerate innovation. To prepare future engineers for this emerging role, undergraduate engineering students should engage in collaborative and interdisciplinary activities with faculties and students from various disciplines (e.g., engineering and social science). Such cross-disciplinary experiences of undergraduate engineering students are not common in today’s university curriculum. Through a project funded by the division of Engineering Education and Centers (EEC) of the National Science Foundation (NSF), a research team of the West Virginia University developed and offered a Holistic Engineering Project Experience (HEPE) to the engineering students. Holistic engineering is an approach catering to the overall engineering profession, instead of focusing on any distinctive engineering discipline such as electrical, civil, chemical, or mechanical engineering. Holistic Engineering is based upon the fact that the traditional engineering courses do not offer sufficient non-technical skills to the engineering students to work effectively in cross-disciplinary social problems (e.g., development of transportation systems and services). The Holistic Engineering approach enables engineering students to learn non-engineering skills (e.g., strategic communication skills) beyond engineering math and sciences, which play a critical role in solving complex 21st-century engineering problems. The research team offered the HEPE course in Spring 2020 semester, where engineering students collaborated with social science students (i.e., students from economics and strategic communication disciplines) to solve a contemporary, complex, open-ended transportation engineering problem with social consequences. Social science students also received the opportunity to develop a better understanding of technical aspects in science and engineering. The open ended problem presented to the students was to “Restore and Improve Urban Infrastructure” in connection to the future deployment of connected and autonomous vehicles, which is identified as a grand challenge by the National Academy of Engineers (NAE) [1]. 
    more » « less
  2. null (Ed.)
    Although engineering graduates are well prepared in the technical aspects of engineering, it is widely acknowledged that there is a need for a greater understanding of the socio-economic contexts in which they will practice their profession. The National Academy of Engineering (NAE) reinforces the critical role that engineers should play in addressing both problems and opportunities that are technical, social, economic, and political in nature in solving the grand challenges. This paper provides an overview of a nascent effort to address this educational need. Through a National Science Foundation (NSF) funded program, a team of researchers at West Virginia University has launched a Holistic Engineering Project Experience (HEPE). This undergraduate course provides the opportunity for engineering students to work with social science students from the fields of economics and strategic communication on complex and open-ended transportation engineering problems. This course involves cross-disciplinary teams working under diverse constraints of real-world social considerations, such as economic impacts, public policy concerns, and public perception and outreach factors, considering the future autonomous transportation systems. The goal of the HEPE platform is for engineering students to have an opportunity to build non-technical—but highly in-demand—professional skills that promote collaboration with others involved in the socio-economic context of engineering matters. Conversely, the HEPE approach provides an opportunity for non-engineering students to become exposed to key concepts and practices in engineering. This paper outlines the initial implementation of the HEPE program, by placing the effort in context of broader trends in education, by outlining the overall purposes of the program, discussing the course design and structure, reviewing the learning experience and outcomes assessment process, and providing preliminary results of a baseline survey that gauges students interests and attitudes towards collaborative and interdisciplinary learning. 
    more » « less
  3. Civil engineering education must be updated to keep pace with the profession and move past a culture of disengagement where technical work is considered separate from societal impact. Civil engineering students need to engage with diversity, equity, inclusion and justice (DEIJ) so they can understand the differential impacts of engineering on individuals from different groups within society. We aim to encourage the transformation of civil engineering education to produce engineers that will be prepared to meaningfully engage with society and advance justice in their future professional roles by providing examples of pedagogical change and analyzing student responses. In this study we implemented new course assignments in an introductory civil engineering course and a civil engineering materials course. In the introductory assignment students were taught to draw systems models and asked to consider social and technical factors contributing to the Hurricane Katrina disaster. In the materials course students completed pre-class readings about a regional highway reconstruction project, including articles about neighborhood opposition to the project, and participated in an in-class discussion. We analyzed student submissions using qualitative content analysis. Students in both courses (33% introductory, 60% materials) described learning about the impact engineering designs had on the community. In the materials class students were asked specifically about the impact of race and wealth on infrastructure decision-making. Student responses showed a wide range in how students understood the history of the situation and dynamics of power and privilege. Errors and limitations in student responses point to specific ways the instructors can improve student learning. Our results demonstrate that the integration of activities about societal impact is possible in technical engineering courses, emphasize the importance of integrating social context and related DEIJ content into technical courses, and provide insights into what students perceived they learned from the activities. 
    more » « less
  4. As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g., websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers. 
    more » « less
  5. Engineering education in the early 21st century is being transformed in many ways to meet the technological challenges of the future. In particular, the role of the humanities and social science in engineering coursework is under new scrutiny, as educators attempt to strengthen students’ proficiencies in aspects of the profession including interpersonal and intercultural skills, assessment of broader impacts of technical work, and especially ethics. These developments are often framed as responses to the demands of employers and institutions, who view these ‘soft’ skills as increasingly relevant to the work life of technical professionals. In this concept paper, we wish to pursue a somewhat different line of thought: We will examine arguments from the philosophy of science and technology, and from the social sciences, about the value of teaching engineers (as well as other technical professionals) to think through humanistic, social, and cultural lenses. We will review a range of perspectives supporting educational reform along these lines, with a particular focus on work in the recent pragmatic tradition (including Sellars, Mitcham, and others). Having established a range of theoretical defenses for educational reform along these lines in engineering fields, we will then consider the distinctions among them and how these insights might be applied most effectively in engineering curricula. We will conclude by reviewing available evidence for the practical utility of such interventions. We hope, by situating current reforms more firmly within a principled framework of ideas, to provide deeper support for positive change in the education of future engineers. 
    more » « less