skip to main content


Title: Avoiding help avoidance: Using interface design changes to promote unsolicited hint usage in an intelligent tutor.
Within intelligent tutoring systems, considerable research has in-vestigated hints, including how to generate data-driven hints, what hint con-tent to present, and when to provide hints for optimal learning outcomes. How-ever, less attention has been paid to how hints are presented. In this paper, we propose a new hint delivery mechanism called “Assertions” for providing unsolicited hints in a data-driven intelligent tutor. Assertions are partially-worked example steps designed to appear within a student workspace, and in the same format as student-derived steps, to show students a possible subgoal leading to the solution. We hypothesized that Assertions can help address the well-known hint avoidance problem. In systems that only provide hints upon request, hint avoidance results in students not receiving hints when they are needed. Our unsolicited Assertions do not seek to improve student help-seeking, but rather seek to ensure students receive the help they need. We contrast Assertions with Messages, text-based, unsolicited hints that appear after student inactivity. Our results show that Assertions significantly increase unsolicited hint usage compared to Messages. Further, they show a signifi-cant aptitude-treatment interaction between Assertions and prior proficiency, with Assertions leading students with low prior proficiency to generate shorter (more efficient) posttest solutions faster. We also present a clustering analysis that shows patterns of productive persistence among students with low prior knowledge when the tutor provides unsolicited help in the form of Assertions. Overall, this work provides encouraging evidence that hint presentation can significantly impact how students use them and using Assertions can be an effective way to address help avoidance.  more » « less
Award ID(s):
1726550
NSF-PAR ID:
10277369
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of artificial intelligence in education
Volume:
30
Issue:
4
ISSN:
1043-1020
Page Range / eLocation ID:
637-667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even those that are well-structured with defined principles and goals. We present a set of datadriven methods to classify, predict, and prevent unproductive problem-solving steps in the well-structured open-ended domain of logic. This approach leverages and extends the Hint Factory, a set of methods that leverages prior student solution attempts to build data-driven intelligent tutors. We present a HelpNeed classification that uses prior student data to determine when students are likely to be unproductive and need help learning optimal problem-solving strategies. We present a controlled study to determine the impact of an Adaptive pedagogical policy that provides proactive hints at the start of each step based on the outcomes of our HelpNeed predictor: productive vs. unproductive. Our results show that the students in the Adaptive condition exhibited better training behaviors, with lower help avoidance, and higher help appropriateness (a higher chance of receiving help when it was likely to be needed), as measured using the HelpNeed classifier, when compared to the Control. Furthermore, the results show that the students who received Adaptive hints based on HelpNeed predictions during training significantly outperform their Control peers on the posttest, with the former producing shorter, more optimal solutions in less time. We conclude with suggestions on how these HelpNeed methods could be applied in other well-structured open-ended domains. 
    more » « less
  2. Within intelligent tutoring systems, hint policies are needed to determine when and how to give hints and what type of hint is most beneficial. In this study, we focus on discovering whether certain hint types influence problem solving behavior. We investigate the influence of two hint types (next-step hints and more abstract high-level hints) on students’ behavior in a college-level logic proof tutor, Deep Thought. The results suggest that hint types can affect student behavior, including hint usage, rule applications, and time in-tutor. 
    more » « less
  3. In the domain of programming, intelligent tutoring systems increasingly employ data-driven methods to automate hint generation. Evaluations of these systems have largely focused on whether they can reliably provide hints for most students, and how much data is needed to do so, rather than how useful the resulting hints are to students. We present a method for evaluating the quality of data-driven hints and how their quality is impacted by the data used to generate them. Using two datasets, we investigate how the quantity of data and the source of data (whether it comes from students or experts) impact one hint generation algorithm. We find that with student training data, hint quality stops improving after 15–20 training solutions and can decrease with additional data. We also find that student data outperforms a single expert solution but that a comprehensive set of expert solutions generally performs best. 
    more » « less
  4. Students often get stuck when programming independently, and need help to progress. Existing, automated feedback can help students progress, but it is unclear whether it ultimately leads to learning. We present Step Tutor, which helps struggling students during programming by presenting them with relevant, step-by-step examples. The goal of Step Tutor is to help students progress, and engage them in comparison, reflection, and learning. When a student requests help, Step Tutor adaptively selects an example to demonstrate the next meaningful step in the solution. It engages the student in comparing "before" and "after" code snapshots, and their corresponding visual output, and guides them to reflect on the changes. Step Tutor is a novel form of help that combines effective aspects of existing support features, such as hints and Worked Examples, to help students both progress and learn. To understand how students use Step Tutor, we asked nine undergraduate students to complete two programming tasks, with its help, and interviewed them about their experience. We present our qualitative analysis of students' experience, which shows us why and how they seek help from Step Tutor, and Step Tutor's affordances. These initial results suggest that students perceived that Step Tutor accomplished its goals of helping them to progress and learn. 
    more » « less
  5. null (Ed.)
    Abstract: Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and classic Markovian models such as Bayesian Knowledge Tracing (BKT) have been successfully applied for student modeling. However, much of this prior work is designed to handle sequences of events with discrete timesteps, rather than considering the continuous aspect of time. Given that time elapsed between successive elements in a student’s trajectory can vary from seconds to days, we applied a Timeaware LSTM (T-LSTM) to model the dynamics of student knowledge state in continuous time. We investigate the effectiveness of T-LSTM on two domains with very different characteristics. One involves an open-ended programming environment where students can self-pace their progress and T-LSTM is compared against LSTM, Recent Temporal Pattern Mining, and the classic Logistic Regression (LR) on the early prediction of student success; the other involves a classic tutor-driven intelligent tutoring system where the tutor scaffolds the student learning step by step and T-LSTM is compared with LSTM, LR, and BKT on the early prediction of student learning gains. Our results show that TLSTM significantly outperforms the other methods on the self-paced, open-ended programming environment; while on the tutor-driven ITS, it ties with LSTM and outperforms both LR and BKT. In other words, while time-irregularity exists in both datasets, T-LSTM works significantly better than other student models when the pace is driven by students. On the other hand, when such irregularity results from the tutor, T-LSTM was not superior to other models but its performance was not hurt either. 
    more » « less