Research on intelligent tutoring systems has been exploring data- driven methods to deliver e ective adaptive assistance. While much work has been done to provide adaptive assistance when students seek help, they may not seek help optimally. This had led to the growing interest in proactive adap- tive assistance, where the tutor provides unsolicited assistance upon predic- tions of struggle or unproductivity. Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. Addressing this dilemma is particularly challenging in open-ended domains, where there can be several ways to solve problems. Researchers have explored methods to determine when to proactively help students, but few of these methods have taken prior hint usage into account. In this paper, we present a novel data-driven approach to incorporate students' hint usage in predicting their need for help. We explore its impact in an intelligent tutor that deals with the open-ended and well-structured domain of logic proofs. We present a controlled study to investigate the impact of an adaptive hint policy based on predictions of HelpNeed that incorporate students' hint usage. We show empirical evidence to support that such a policy can save students a signi - cant amount of time in training, and lead to improved posttest results, when compared to a control without proactive interventions. We also show that incorporating students' hint usage signi cantly improves the adaptive hint policy's e cacy in predicting students' HelpNeed, thereby reducing training unproductivity, reducing possible help avoidance, and increasing possible help appropriateness (a higher chance of receiving help when it was likely to be needed). We conclude with suggestions on the domains that can bene t from this approach as well as the requirements for adoption.
more »
« less
Avoiding help avoidance: Using interface design changes to promote unsolicited hint usage in an intelligent tutor.
Within intelligent tutoring systems, considerable research has in-vestigated hints, including how to generate data-driven hints, what hint con-tent to present, and when to provide hints for optimal learning outcomes. How-ever, less attention has been paid to how hints are presented. In this paper, we propose a new hint delivery mechanism called “Assertions” for providing unsolicited hints in a data-driven intelligent tutor. Assertions are partially-worked example steps designed to appear within a student workspace, and in the same format as student-derived steps, to show students a possible subgoal leading to the solution. We hypothesized that Assertions can help address the well-known hint avoidance problem. In systems that only provide hints upon request, hint avoidance results in students not receiving hints when they are needed. Our unsolicited Assertions do not seek to improve student help-seeking, but rather seek to ensure students receive the help they need. We contrast Assertions with Messages, text-based, unsolicited hints that appear after student inactivity. Our results show that Assertions significantly increase unsolicited hint usage compared to Messages. Further, they show a signifi-cant aptitude-treatment interaction between Assertions and prior proficiency, with Assertions leading students with low prior proficiency to generate shorter (more efficient) posttest solutions faster. We also present a clustering analysis that shows patterns of productive persistence among students with low prior knowledge when the tutor provides unsolicited help in the form of Assertions. Overall, this work provides encouraging evidence that hint presentation can significantly impact how students use them and using Assertions can be an effective way to address help avoidance.
more »
« less
- Award ID(s):
- 1726550
- PAR ID:
- 10277369
- Date Published:
- Journal Name:
- Journal of artificial intelligence in education
- Volume:
- 30
- Issue:
- 4
- ISSN:
- 1043-1020
- Page Range / eLocation ID:
- 637-667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even those that are well-structured with defined principles and goals. We present a set of datadriven methods to classify, predict, and prevent unproductive problem-solving steps in the well-structured open-ended domain of logic. This approach leverages and extends the Hint Factory, a set of methods that leverages prior student solution attempts to build data-driven intelligent tutors. We present a HelpNeed classification that uses prior student data to determine when students are likely to be unproductive and need help learning optimal problem-solving strategies. We present a controlled study to determine the impact of an Adaptive pedagogical policy that provides proactive hints at the start of each step based on the outcomes of our HelpNeed predictor: productive vs. unproductive. Our results show that the students in the Adaptive condition exhibited better training behaviors, with lower help avoidance, and higher help appropriateness (a higher chance of receiving help when it was likely to be needed), as measured using the HelpNeed classifier, when compared to the Control. Furthermore, the results show that the students who received Adaptive hints based on HelpNeed predictions during training significantly outperform their Control peers on the posttest, with the former producing shorter, more optimal solutions in less time. We conclude with suggestions on how these HelpNeed methods could be applied in other well-structured open-ended domains.more » « less
-
Within intelligent tutoring systems, hint policies are needed to determine when and how to give hints and what type of hint is most beneficial. In this study, we focus on discovering whether certain hint types influence problem solving behavior. We investigate the influence of two hint types (next-step hints and more abstract high-level hints) on students’ behavior in a college-level logic proof tutor, Deep Thought. The results suggest that hint types can affect student behavior, including hint usage, rule applications, and time in-tutor.more » « less
-
In the domain of programming, intelligent tutoring systems increasingly employ data-driven methods to automate hint generation. Evaluations of these systems have largely focused on whether they can reliably provide hints for most students, and how much data is needed to do so, rather than how useful the resulting hints are to students. We present a method for evaluating the quality of data-driven hints and how their quality is impacted by the data used to generate them. Using two datasets, we investigate how the quantity of data and the source of data (whether it comes from students or experts) impact one hint generation algorithm. We find that with student training data, hint quality stops improving after 15–20 training solutions and can decrease with additional data. We also find that student data outperforms a single expert solution but that a comprehensive set of expert solutions generally performs best.more » « less
-
Students often get stuck when programming independently, and need help to progress. Existing, automated feedback can help students progress, but it is unclear whether it ultimately leads to learning. We present Step Tutor, which helps struggling students during programming by presenting them with relevant, step-by-step examples. The goal of Step Tutor is to help students progress, and engage them in comparison, reflection, and learning. When a student requests help, Step Tutor adaptively selects an example to demonstrate the next meaningful step in the solution. It engages the student in comparing "before" and "after" code snapshots, and their corresponding visual output, and guides them to reflect on the changes. Step Tutor is a novel form of help that combines effective aspects of existing support features, such as hints and Worked Examples, to help students both progress and learn. To understand how students use Step Tutor, we asked nine undergraduate students to complete two programming tasks, with its help, and interviewed them about their experience. We present our qualitative analysis of students' experience, which shows us why and how they seek help from Step Tutor, and Step Tutor's affordances. These initial results suggest that students perceived that Step Tutor accomplished its goals of helping them to progress and learn.more » « less
An official website of the United States government

