skip to main content


Title: High-throughput computation of novel ternary B–C–N structures and carbon allotropes with electronic-level insights into superhard materials from machine learning
Discovering new materials with desired properties has been a dominant and crucial topic of interest in the field of materials science in the past few decades. In this work, novel carbon allotropes and ternary B–C–N structures were generated using the state-of-the-art RG 2 code. All structures were fully optimized using density functional theory with first-principles calculations. Several hundred carbon allotropes and ternary B–C–N structures were identified to be superhard materials. The thermodynamic stability of some randomly selected superhard materials was confirmed by evaluating the full phonon dispersions in the Brillouin zone. The new carbon allotropes and ternary B–C–N structures possess a wide range of mechanical properties generally and Vickers hardness specifically. Through 2D Pearson's correlation map, we first reproduced the well-accepted explanation and relationship of the Vickers hardness of the generated structures with other mechanical properties such as shear modulus, bulk modulus, Pugh's ratio, universal anisotropy, and Poisson's ratio. We then propose two fundamentally new descriptors from the electronic level, namely local potential and electron localization function averaged over a unit cell, both of which exhibit a strong correlation with Vickers hardness. More importantly, these descriptors are easy to access from first-principles calculations (at least two orders of magnitude faster than the traditional calculation of elastic constants), and thus can serve as a fast and accurate approach for screening superhard materials. We also combined these new descriptors with known composition and structural descriptors in the machine learning training process. The new descriptors significantly enhance the performance of the trained machine learning model in predicting the Vickers hardness of unknown materials, which provides strong evidence for local potential and electron localization function to be considered in future high-throughput computation. This work unravels more fundamental but previously unexplored knowledge about superhard materials and the newly proposed electronic level descriptors are expected to accelerate the discovery of new superhard materials.  more » « less
Award ID(s):
1655740 2110033
NSF-PAR ID:
10326200
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
48
ISSN:
2050-7488
Page Range / eLocation ID:
27596 to 27614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The search for new superhard materials is of great interest for extreme industrial applications. However, the theoretical prediction of hardness is still a challenge for the scientific community, given the difficulty of modeling plastic behavior of solids. Different hardness models have been proposed over the years. Still, they are either too complicated to use, inaccurate when extrapolating to a wide variety of solids or require coding knowledge. In this investigation, we built a successful machine learning model that implements Gradient Boosting Regressor (GBR) to predict hardness and uses the mechanical properties of a solid (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) as input variables. The model was trained with an experimental Vickers hardness database of 143 materials, assuring various kinds of compounds. The input properties were calculated from the theoretical elastic tensor. The Materials Project’s database was explored to search for new superhard materials, and our results are in good agreement with the experimental data available. Other alternative models to compute hardness from mechanical properties are also discussed in this work. Our results are available in a free-access easy to use online application to be further used in future studies of new materials atwww.hardnesscalculator.com.

     
    more » « less
  2. Twin boundaries (TBs) play an essential role in enhancing the mechanical, electronic and transport properties of polycrystalline materials. However, the mechanisms are not well understood. In particular, we considered that they may play an important role in boron rich boron carbide (B vr BC), which exhibits promising properties such as low density, super hardness, high abrasion resistance, and excellent neutron absorption. Here, we apply first-principles-based simulations to identify the atomic structures of TBs in B vr BC and their roles for the inelastic response to applied stresses. In addition to symmetric TBs in B vr BC, we identified a new type of asymmetric twin that constitutes the phase boundaries between boron rich boron carbide (B 13 C 2 ) and B vr BC (B 14 C). The predicted mechanical response of these asymmetric twins indicates a significant reduction of the ideal shear strength compared to single crystals B 13 C 2 and B 14 C, suggesting that the asymmetric twins facilitate the disintegration of icosahedral clusters under applied stress, which in turn leads to amorphous band formation and brittle failure. These results provide a mechanistic basis towards understating the roles of TBs in B vr BC and related superhard ceramics. 
    more » « less
  3. Abstract

    We build random forests models to predict elastic properties and mechanical hardness of a compound, using only its chemical formula as input. The model training uses over 10,000 target compounds and 60 features based on stoichiometric attributes, elemental properties, orbital occupations, and ionic bonding levels. Using the models, we construct triangular graphs for B-C-N compounds to map out their bulk and shear moduli, as well as hardness values. The graphs indicate that a 1:1 B-N ratio can lead to various superhard compositions. We also validate the machine learning results by evolutionary structure prediction and density functional theory. Our study shows that BC10N, B4C5N3, and B2C3N exhibit dynamically stable phases with hardness values >40 GPa, which are superhard materials that potentially could be synthesized by low-temperature plasma methods.

     
    more » « less
  4. The success of graphene created a new era in materials science, especially for two-dimensional (2D) materials. 2D single-crystal carbon nitride (C 3 N) is the first and only crystalline, hole-free, single-layer carbon nitride and its controlled large-scale synthesis has recently attracted tremendous interest in thermal transport. Here, we performed a comparative study of thermal transport between monolayer C 3 N and the parent graphene, and focused on the effect of temperature and strain on the thermal conductivity ( κ ) of C 3 N, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The κ of C 3 N shows an anomalous temperature dependence, and the κ of C 3 N at high temperatures is larger than the expected value following the common trend of κ ∼ 1/ T . Moreover, the κ of C 3 N is found to be increased by applying a bilateral tensile strain, despite its similar planar honeycomb structure to graphene. The underlying mechanism is revealed by providing direct evidence for the interaction between lone-pair N-s electrons and bonding electrons from C atoms in C 3 N based on the analysis of orbital-projected electronic structures and electron localization function (ELF). Our research not only conduct a comprehensive study on the thermal transport in graphene-like C 3 N, but also reveal the physical origin of its anomalous properties, which would have significant implications on the future studies of nanoscale thermal transport. 
    more » « less
  5. Abstract

    A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of ansp3carbon framework that acts as a diamond anvil cell by constraining the distance between parallelcis‐polyacetylene chains. The distance between thesesp2carbon atoms renders the phase metallic, and yields two well‐nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of thesp2carbons being key contributors to the electron–phonon coupling. Thesp3carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on‐surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying thesp2versussp3carbon content, and by doping.

     
    more » « less