skip to main content


Title: The Effect of Storm Direction on Flood Frequency Analysis
Abstract

Storm direction modulates a hydrograph's magnitude and duration, thus having a potentially large effect on local flood risk. However, how changes in the preferential storm direction affect the probability distribution of peak flows remains unknown. We address this question with a novel Monte Carlo approach where stochastically transposed storms drive hydrologic simulations over medium and mesoscale watersheds in the Midwestern United States. Systematic rotations of these watersheds are used to emulate changes in the preferential storm direction. We found that the peak flow distribution impacts are scale‐dependent, with larger changes observed in the mesoscale watershed than in the medium‐scale watershed. We attribute this to the high diversity of storm patterns and the storms' scale relative to watershed size. This study highlights the potential of the proposed stochastic framework to address fundamental questions about hydrologic extremes when our ability to observe these events in nature is hindered by technical constraints and short time records.

 
more » « less
Award ID(s):
2021015 1830172 2020814 1749638
NSF-PAR ID:
10391704
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
9
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report an empirical analysis of the hydrologic response of three small, highly impervious urban watersheds to pulse rainfall events, to assess how traditional stormwater management (SWM) alters urban hydrographs. The watersheds vary in SWM coverage from 3% to 61% and in impervious cover from 45% to 67%. By selecting a set of storm events that involved a single rainfall pulse with >96% of total precipitation delivered in 60 min, we reduced the effect of differences between storms on hydrograph response to isolate characteristic responses attributable to watershed properties. Watershed‐average radar rainfall data were used to generate local storm hyetographs for each event in each watershed, thus compensating for the extreme spatial and temporal heterogeneity of short‐duration, intense rainfall events. By normalizing discharge values to the discharge peak and centring each hydrograph on the time of peak we were able to visualize the envelope of hydrographs for each group and to generate representative composite hydrographs for comparison across the three watersheds. Despite dramatic differences in the fraction of watershed area draining to SWM features across these three headwater tributaries, we did not find strong evidence that SWM causes significant attenuation of the hydrograph peak. Hydrograph response for the three watersheds is remarkably uniform despite contrasts in SWM, impervious cover and spatial patterns of land cover type. The primary difference in hydrograph response is observed on the recession limb of the hydrograph, and that change appears to be associated with higher storm‐total runoff in the watersheds with more area draining to SWM. Our findings contribute more evidence to the work of previous authors suggesting that SWM is less effective at attenuating urban hydrographs than is commonly assumed. Our findings also are consistent with previous work concluding that percent impervious cover may have greater influence on runoff volume than percent SWM coverage.

     
    more » « less
  2. Abstract

    Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer‐reviewed studies of watershed‐scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta‐analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM‐mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.

     
    more » « less
  3. null (Ed.)
    Compound flooding is a physical phenomenon that has become more destructive in recent years. Moreover, compound flooding is a broad term that envelops many different physical processes that can range from preconditioned, to multivariate, to temporally compounding, or spatially compounding. This research aims to analyze a specific case of compound flooding related to tropical cyclones where the compounding effect is on coastal flooding due to a combination of storm surge and river discharge. In recent years, such compound flood events have increased in frequency and magnitude, due to a number of factors such as sea-level rise from warming oceans. Therefore, the ability to model such events is of increasing urgency. At present, there is no holistic, integrated modeling system capable of simulating or forecasting compound flooding on a large regional or global scale, leading to the need to couple various existing models. More specifically, two more challenges in such a modeling effort are determining the primary model and accounting for the effect of adjacent watersheds that discharge to the same receiving water body in amplifying the impact of compound flooding from riverine discharge with storm surge when the scale of the model includes an entire coastal line. In this study, we investigated the possibility of using the Advanced Circulation (ADCIRC) model as the primary model to simulate the compounding effects of fluvial flooding and storm surge via loose one-way coupling with gage data through internal time-dependent flux boundary conditions. The performance of the ADCIRC model was compared with the Hydrologic Engineering Center- River Analysis System (HEC-RAS) model both at the watershed and global scales. Furthermore, the importance of including riverine discharges and the interactions among adjacent watersheds were quantified. Results showed that the ADCIRC model could reliably be used to model compound flooding on both a watershed scale and a regional scale. Moreover, accounting for the interaction of river discharge from multiple watersheds is critical in accurately predicting flood patterns when high amounts of riverine flow occur in conjunction with storm surge. Particularly, with storms such as Hurricane Harvey (2017), where river flows were near record levels, inundation patterns and water surface elevations were highly dependent on the incorporation of the discharge input from multiple watersheds. Such an effect caused extra and longer inundations in some areas during Hurricane Harvey. Comparisons with real gauge data show that adding internal flow boundary conditions into ADCIRC to account for river discharge from multiple watersheds significantly improves accuracy in predictions of water surface elevations during coastal flooding events. 
    more » « less
  4. Abstract

    As stormwater control measures (SCMs) capture surface runoff from impervious areas, a shift in the water balance and flow regime components may emerge in urban watersheds, but the amount of SCM treatment needed to detectably shift these components may vary. We used the Soil and Water Assessment Tool (SWAT) hydrologic model to assess the sensitivity of 16 hydrologic metrics as an increasingly dense rain garden SCM network was applied across the West Creek watershed, near Cleveland, Ohio (USA). As the area treated by SCMs increased, annual baseflow increases matched decreases in surface runoff, while water yield and evapotranspiration changes remained small. The stream's peak response to rainfall decreased with SCM implementation across storm sizes, ranging from the threshold rainfall depth (4.8 mm) to values higher than the design storm of a single rain garden (19 mm). SCM networks draining >20% of directly connected impervious area (DCIA) significantly decreased the magnitude of discharges with a return period of less than 1 year, the percentage of time above mean flow, and flashiness. Recession slopes and annual 1‐ and 7‐day low flows exhibited a slight response that fell within uncertainty limits of the model. Water balance and rainfall response metrics exhibited the greatest sensitivity to different intensities of stormwater management, while infrequent high and low flows were resistant to detectable change even at high levels of SCM treatment when model uncertainty was included.

     
    more » « less
  5. Abstract

    The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.

     
    more » « less