skip to main content

Title: Action Localization Through Continual Predictive Learning
The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We more » demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task. « less
Authors:
;
Editors:
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, JM.
Award ID(s):
1955230 1956050
Publication Date:
NSF-PAR ID:
10278139
Journal Name:
European Conference on Computer Vision
Sponsoring Org:
National Science Foundation
More Like this
  1. Raman, B. ; Murala, S. ; Chowdhury, A. ; Dhall, A. ; Goyal, P. (Ed.)
    Using offline training schemes, researchers have tackled the event segmentation problem by providing full or weak-supervision through manually annotated labels or self-supervised epoch-based training. Most works consider videos that are at most 10’s of minutes long. We present a self-supervised perceptual prediction framework capable of temporal event segmentation by building stable representations of objects over time and demonstrate it on long videos, spanning several days at 25 FPS. The approach is deceptively simple but quite effective. We rely on predictions of high-level features computed by a standard deep learning backbone. For prediction, we use an LSTM, augmented with an attention mechanism, trained in a self-supervised manner using the prediction error. The self-learned attention maps effectively localize and track the event-related objects in each frame. The proposed approach does not require labels. It requires only a single pass through the video, with no separate training set. Given the lack of datasets of very long videos, we demonstrate our method on video from 10 d (254 h) of continuous wildlife monitoring data that we had collected with required permissions. We find that the approach is robust to various environmental conditions such as day/night conditions, rain, sharp shadows, and windy conditions. For themore »task of temporally locating events at the activity level, we had an 80% activity recall rate for one false activity detection every 50 min. We will make the dataset, which is the first of its kind, and the code available to the research community. Project page is available at https://ramymounir.com/publications/EventSegmentation/.« less
  2. Accurate pose estimation is often a requirement for robust robotic grasping and manipulation of objects placed in cluttered, tight environments, such as a shelf with multiple objects. When deep learning approaches are employed to perform this task, they typically require a large amount of training data. However, obtaining precise 6 degrees of freedom for ground-truth can be prohibitively expensive. This work therefore proposes an architecture and a training process to solve this issue. More precisely, we present a weak object detector that enables localizing objects and estimating their 6D poses in cluttered and occluded scenes. To minimize the human labor required for annotations, the proposed detector is trained with a combination of synthetic and a few weakly annotated real images (as little as 10 images per object), for which a human provides only a list of objects present in each image (no time-consuming annotations, such as bounding boxes, segmentation masks and object poses). To close the gap between real and synthetic images, we use multiple domain classifiers trained adversarially. During the inference phase, the resulting class-specific heatmaps of the weak detector are used to guide the search of 6D poses of objects. Our proposed approach is evaluated on several publiclymore »available datasets for pose estimation. We also evaluated our model on classification and localization in unsupervised and semi-supervised settings. The results clearly indicate that this approach could provide an efficient way toward fully automating the training process of computer vision models used in robotics.« less
  3. Event perception tasks such as recognizing and localizing actions in streaming videos are essential for scaling to real-world application contexts. We tackle the problem of learning actor-centered representations through the notion of continual hierarchical predictive learning to localize actions in streaming videos without the need for training labels and outlines for the objects in the video. We propose a framework driven by the notion of hierarchical predictive learning to construct actor-centered features by attention-based contextualization. The key idea is that predictable features or objects do not attract attention and hence do not contribute to the action of interest. Experiments on three benchmark datasets show that the approach can learn robust representations for localizing actions using only one epoch of training, i.e., a single pass through the streaming video. We show that the proposed approach outperforms unsupervised and weakly supervised baselines while offering competitive performance to fully supervised approaches. Additionally, we extend the model to multi-actor settings to recognize group activities while localizing the multiple, plausible actors. We also show that it generalizes to out-of-domain data with limited performance degradation.
  4. Visual event perception tasks such as action localization have primarily focused on supervised learning settings under a static observer, i.e., the camera is static and cannot be controlled by an algorithm. They are often restricted by the quality, quantity, and diversity of annotated training data and do not often generalize to out-of-domain samples. In this work, we tackle the problem of active action localization where the goal is to localize an action while controlling the geometric and physical parameters of an active camera to keep the action in the field of view without training data. We formulate an energy-based mechanism that combines predictive learning and reactive control to perform active action localization without rewards, which can be sparse or non-existent in real-world environments. We perform extensive experiments in both simulated and real-world environments on two tasks - active object tracking and active action localization. We demonstrate that the proposed approach can generalize to different tasks and environments in a streaming fashion, without explicit rewards or training. We show that the proposed approach outperforms unsupervised baselines and obtains competitive performance compared to those trained with reinforcement learning.
  5. Egocentric perception has grown rapidly with the advent of immersive computing devices. Human gaze prediction is an important problem in analyzing egocentric videos and has primarily been tackled through either saliency-based modeling or highly supervised learning. We quantitatively analyze the generalization capabilities of supervised, deep learning models on the egocentric gaze prediction task on unseen, out-of-domain data. We find that their performance is highly dependent on the training data and is restricted to the domains specified in the training annotations. In this work, we tackle the problem of jointly predicting human gaze points and temporal segmentation of egocentric videos without using any training data. We introduce an unsupervised computational model that draws inspiration from cognitive psychology models of event perception. We use Grenander's pattern theory formalism to represent spatial-temporal features and model surprise as a mechanism to predict gaze fixation points. Extensive evaluation on two publicly available datasets - GTEA and GTEA+ datasets-shows that the proposed model can significantly outperform all unsupervised baselines and some supervised gaze prediction baselines. Finally, we show that the model can also temporally segment egocentric videos with a performance comparable to more complex, fully supervised deep learning baselines.