Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Raman, B. ; Murala, S. ; Chowdhury, A. ; Dhall, A. ; Goyal, P. (Ed.)Using offline training schemes, researchers have tackled the event segmentation problem by providing full or weak-supervision through manually annotated labels or self-supervised epoch-based training. Most works consider videos that are at most 10’s of minutes long. We present a self-supervised perceptual prediction framework capable of temporal event segmentation by building stable representations of objects over time and demonstrate it on long videos, spanning several days at 25 FPS. The approach is deceptively simple but quite effective. We rely on predictions of high-level features computed by a standard deep learning backbone. For prediction, we use an LSTM, augmented with an attentionmore »Free, publicly-accessible full text available July 24, 2023
-
Complex analyses involving multiple, dependent random quantities often lead to graphical models—a set of nodes denoting variables of interest, and corresponding edges denoting statistical interactions between nodes. To develop statistical analyses for graphical data, especially towards generative modeling, one needs mathematical representations and metrics for matching and comparing graphs, and subsequent tools, such as geodesics, means, and covariances. This paper utilizes a quotient structure to develop efficient algorithms for computing these quantities, leading to useful statistical tools, including principal component analysis, statistical testing, and modeling. We demonstrate the efficacy of this framework using datasets taken from several problem areas, includingmore »
-
Vedaldi, A. ; Bischof, H. ; Brox, T. ; Frahm, JM. (Ed.)The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach tomore »