skip to main content


Title: Leveraging Prior Computing and Music Experience for Situational Interest Formation
Computer science educators often use multiple creative computing platforms to motivate and support students learning computer science. Arguably, we understand little about the complementary ways in which the various platforms build on students' prior experiences. This study compares two CS+music platforms used by middle school students in a summer camp to understand the unique affordances of each platform at activating and building upon prior music and computing experiences. We assess interest formation through pre and post student surveys and via interviews on the final day of the camp. The findings suggest that using different approaches to CS+music platform design may help engage students with different levels of prior music and coding experience.  more » « less
Award ID(s):
1837661
NSF-PAR ID:
10278150
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SIGCSE '21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
Volume:
March 2021
Page Range / eLocation ID:
928 to 933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session. 
    more » « less
  2. Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career. 
    more » « less
  3. Students of all socioeconomic backgrounds love music and express their identity through music. There are strong historical connections between music and computing, and computer-based music has a heavy presence in contemporary popular culture. Thus, programming electronic music can provide the type of authentic learning experience that fosters participation in computer science (CS) by minoritized students. Although important efforts have been made in that direction, they have not reached young children in mainstream public classrooms, particularly in schools serving children from low-income and marginalized backgrounds. Developing a computational tool and educational program that reaches this key demographic holds the potential to greatly increase CS knowledge and participation in the future workforce. For this, our team has created M-flow, a flow-based music programming platform that seeks to be engaging for children from the outset, and that makes it extremely easy for non-specialized teachers to learn and implement CS activities in the classroom. 
    more » « less
  4. Ko, A. K. (Ed.)
    There are significant participation gaps in computing, and the way to address these participation gaps lies not simply in getting students from underrepresented groups into a CS1 classroom, but supporting students to pursue their interest in computing further beyond CS1. There are many factors that may influence students’ pursuit of computing beyond introductory courses, including their sense that they can do what CS courses require of them (their self-efficacy) and positive emotional experiences in CS courses. When interest has been addressed in computing education, research has treated it mostly as an outcome of particular pedagogical approaches or curricula; what has not been studied is how students’ longer-term interest develops through more granular experiences that students have as they begin to engage with computing. In this paper, we present the results of a study designed to investigate how students’ interest in computing develops as a product of their momentary self-efficacy and affective experiences. Using a methodology that is relatively uncommon to computer science education—the experience sampling method, which involves frequently asking students brief, unobtrusive questions about their experiences—we surveyed CS1 students every week over the course of a semester to capture the nuances of their experiences. 74 CS1 students responded 14-18 times over the course of a semester about their self-efficacy, frustration, and situational interest. With this data, we used a multivariate, multi-level statistical model that allowed us to estimate how students’ granular, momentary experiences (measured through the experience sampling method surveys) and initial interest, self-efficacy, and self-reported gender (measured through traditional surveys) relate to their longer-term interest and achievement in the course. We found that students’ momentary experiences have a significant impact on their interest in computing and course outcomes, even controlling for the self-efficacy and interest students reported at the beginning of the semester. We also found significant gender differences in students’ momentary experiences, however, these were reduced substantially when students’ self-efficacy was added to the model, suggesting that gender gaps could instead be self-efficacy gaps. These results suggest that students’ momentary experiences in CS1, how they experience the course week to week, have an impact on their longer-term interest and learning outcomes. Furthermore, we found that male and female students reported different experiences, suggesting that improving the CS1 experiences that students have could help to close gender-related participation gaps. In all, this study shows that the granular experiences students have in CS1 matter for key outcomes of interest to computing education researchers and educators and that the experience sampling method, more common in fields adjacent to computer science education, provides one way for researchers to integrate the experiences students have into our accounts of why students become interested in computing. 
    more » « less
  5. Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway. 
    more » « less