The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session.
more »
« less
Leveraging Prior Computing and Music Experience for Situational Interest Formation
Computer science educators often use multiple creative computing platforms to motivate and support students learning computer science. Arguably, we understand little about the complementary ways in which the various platforms build on students' prior experiences. This study compares two CS+music platforms used by middle school students in a summer camp to understand the unique affordances of each platform at activating and building upon prior music and computing experiences. We assess interest formation through pre and post student surveys and via interviews on the final day of the camp. The findings suggest that using different approaches to CS+music platform design may help engage students with different levels of prior music and coding experience.
more »
« less
- Award ID(s):
- 1837661
- PAR ID:
- 10278150
- Date Published:
- Journal Name:
- SIGCSE '21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
- Volume:
- March 2021
- Page Range / eLocation ID:
- 928 to 933
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Students of all socioeconomic backgrounds love music and express their identity through music. There are strong historical connections between music and computing, and computer-based music has a heavy presence in contemporary popular culture. Thus, programming electronic music can provide the type of authentic learning experience that fosters participation in computer science (CS) by minoritized students. Although important efforts have been made in that direction, they have not reached young children in mainstream public classrooms, particularly in schools serving children from low-income and marginalized backgrounds. Developing a computational tool and educational program that reaches this key demographic holds the potential to greatly increase CS knowledge and participation in the future workforce. For this, our team has created M-flow, a flow-based music programming platform that seeks to be engaging for children from the outset, and that makes it extremely easy for non-specialized teachers to learn and implement CS activities in the classroom.more » « less
-
Attracting students to computing is crucial for advancing the development of new skills and fostering positive attitudes toward the field, especially among females and minoritized populations. One promising approach involves integrating computing with artistic activities, such as music. This study examines how learner’s prior experiences influence their participation in a virtual summer camp on coding with music. The study also examines how participation in the camp influences participants' attitudes about computing, with an eye toward gender differences. Data were collected through participant surveys (N=73) and focus groups (N=48). Findings suggest that parents’ and guardians' involvement is crucial for participation and integrating coding with artistic work holds promise for attracting students to the field. Findings can inform possible paths to engaging students in computing.more » « less
-
Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career.more » « less
-
Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway.more » « less