skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Impact of Sleep Disturbance on Regional Brain Volumes
Abstract Sleep disruption has been associated with increased beta-amyloid deposition and greater risk for later development of Alzheimer’s disease. Studies indicate that sleep disturbance correlates with regional brain volumes, but data are limited. We sought to determine the effect of sleep disturbance on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status. We conducted a secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set using complete structural imaging data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of sleep disturbance (via Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Sleep disruption was associated with greater volumes in the right and left lateral ventricles and greater volume of total white matter hyperintensities (p<.05). Lower mean volumes in total brain, total gray matter, and total cerebrum grey matter volumes, and in 12 hippocampal, frontal, parietal, and temporal lobe volumes were observed among participants who reported sleep disturbance. Males, Hispanic participants, and those with less education were more likely to report sleep disruption. Cognitive status moderated the relationship between sleep disturbance and lateral ventricular volumes, while APOE e4 moderated the effect between sleep disturbance and parietal lobe volumes. These findings suggest that disrupted sleep is associated with atrophy across multiple brain regions and ventricular hydrocephalus ex vacuo, after controlling for intracranial volume and demographic covariates. The influence of cognition and APOE e4 status indicates that this relationship is affected by co-occurring physiological processes.  more » « less
Award ID(s):
1920182
PAR ID:
10278157
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Innovation in Aging
Volume:
4
Issue:
Supplement_1
ISSN:
2399-5300
Page Range / eLocation ID:
470 to 470
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Anxiety has been associated with greater risk of Alzheimer’s disease (AD) and existing research has identified structural differences in regional brain tissue in anxious compared to healthy samples, but results have been variable and somewhat inconsistent. We sought to determine the effect of anxiety on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status using data from a large, national dataset. A secondary analysis of the National Alzheimer’s Coordinating Center Uniform (NACC) Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of anxiety (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Anxiety was associated with lower total brain and total cortical gray matter volumes and increased lateral ventricular volume (p<.05). Lower mean volumes were also observed in all hippocampal, frontal lobe, parietal lobe, temporal lobe, and right occipital lobe volumes among participants who reported anxiety. Conversely, greater ventricular volumes were also correlated with anxiety. Findings suggest that anxiety is associated with significant atrophy in multiple brain regions and ventricular enlargement, even after controlling for intracranial volume and demographic covariates. Anxiety-related changes to brain morphology may contribute to greater AD risk. 
    more » « less
  2. null (Ed.)
    Abstract Depression has been associated with greater risk of Alzheimer’s disease (AD), and existing research has identified structural differences in brain regions in depressed subjects compared to healthy samples, but results have been heterogeneous. We sought to determine the effect of depression on regional brain volumes by cognitive and APOE e4 status. Secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of depression (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRIs. Depression in the prior two years was associated with lower total brain, cerebrum,, and gray matter volumes and greater total brain white matter hyperintensities (p<.05). Greater volumes were also observed in all ventricular volume measures. Lower mean volumes were observed in six additional frontal lobe and parietal lobe cortical regions. Alternately, depression antecedent to the past 2 years correlated only with occipital lobe gray matter volumes (right, left, total). Our findings suggest that depression in the prior two years is associated with atrophy across multiple brain regions and related ventricular enlargement, even after controlling for intracranial volume and demographic covariates. The duration of depression influences results, however, as depression prior to 2 years before assessment was correlated with significantly fewer and different regional brain volume changes. 
    more » « less
  3. PurposeThis study examined relations between four late-life depression subgroups (recent, >2 years ago, chronic, no depression) and regional brain volumes using structural MRI data from the National Alzheimer’s Coordinating Center (n=1,551). Data AnalysisMultiple linear regressions evaluated the effects of depression on 30 MRI biomarkers, while moderation analyses assessed how APOE ε4 and depression shape the connections between cognitive status and brain structure volumes. ResultsAfter adjusting for covariates and applying Hochberg’s method, recent depression (< 2 years) was associated with reduced total cerebrum cranial volume and left frontal lobe cortical gray matter volume. Chronic depression correlated with larger right lateral ventricle volume. ConclusionThese findings suggest that recent depression is linked to brain atrophy across specific regions and ventricular enlargement. Future research should investigate age-related impacts on these associations and whether restoration of brain volume occurs after depressive symptoms subside. 
    more » « less
  4. Abstract Neuroimaging in the preclinical phase of Alzheimer’s disease provides information crucial to early intervention, particularly in people with a high genetic risk. Metabolic network modularity, recently applied to the study of dementia, is increased in Alzheimer’s disease patients compared with controls, but network modularity in cognitively unimpaired elderly with various risks of developing Alzheimer’s disease needs to be determined. Based on their 5-year cognitive progression, we stratified 117 cognitively normal participants (78.3 ± 4.0 years of age, 52 women) into three age-matched groups, each with a different level of risk for Alzheimer’s disease. From their fluorodeoxyglucose PET we constructed metabolic networks, evaluated their modular structures using the Louvain algorithm, and compared them between risk groups. As the risk for Alzheimer’s disease increased, the metabolic connections among brain regions weakened and became more modular, indicating network fragmentation and functional impairment of the brain. We then set out to determine the correlation between regional brain metabolism, particularly in the modules derived from the previous analysis, and the regional expression of Alzheimer-risk genes in the brain, obtained from the Allen Human Brain Atlas. In all risk groups of this elderly population, the regional brain expression of most Alzheimer-risk genes showed a strong correlation with brain metabolism, particularly in the module that corresponded to regions of the brain that are affected earliest and most severely in Alzheimer’s disease. Among the genes, APOE and CD33 showed the strongest negative correlation and SORL1 showed the strongest positive correlation with brain metabolism. The Pearson correlation coefficients remained significant when contrasted against a null-hypothesis distribution of correlation coefficients across the whole transcriptome of 20 736 genes (SORL1: P = 0.0130; CD33, P = 0.0136; APOE: P = 0.0093). The strong regional correlation between Alzheimer-related gene expression in the brain and brain metabolism in older adults highlights the role of brain metabolism in the genesis of dementia. 
    more » « less
  5. Abstract Previous research has established important developmental changes in sleep and memory during early childhood. These changes have been linked separately to brain development, yet few studies have explored their interrelations during this developmental period. The goal of this report was to explore these associations in 200 (100 female) typically developing 4- to 8-year-old children. We examined whether habitual sleep patterns (24-h sleep duration, nap status) were related to children’s performance on a source memory task and hippocampal subfield volumes. Results revealed that, across all participants, after controlling for age, habitual sleep duration was positively related to source memory performance. In addition, in younger (4–6 years, n = 67), but not older (6–8 years, n = 70) children, habitual sleep duration was related to hippocampal head subfield volume (CA2-4/DG). Moreover, within younger children, volume of hippocampal subfields varied as a function of nap status; children who were still napping (n = 28) had larger CA1 volumes in the body compared to children who had transitioned out of napping (n = 39). Together, these findings are consistent with the hypothesis that habitually napping children may have more immature cognitive networks, as indexed by hippocampal integrity. Furthermore, these results shed additional light on why sleep is important during early childhood, a period of substantial brain development. 
    more » « less