skip to main content


Title: The Effect of Anxiety on Regional Brain Volumes in the National Alzheimer’s Coordinating Center Uniform Data Set
Abstract Anxiety has been associated with greater risk of Alzheimer’s disease (AD) and existing research has identified structural differences in regional brain tissue in anxious compared to healthy samples, but results have been variable and somewhat inconsistent. We sought to determine the effect of anxiety on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status using data from a large, national dataset. A secondary analysis of the National Alzheimer’s Coordinating Center Uniform (NACC) Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of anxiety (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Anxiety was associated with lower total brain and total cortical gray matter volumes and increased lateral ventricular volume (p<.05). Lower mean volumes were also observed in all hippocampal, frontal lobe, parietal lobe, temporal lobe, and right occipital lobe volumes among participants who reported anxiety. Conversely, greater ventricular volumes were also correlated with anxiety. Findings suggest that anxiety is associated with significant atrophy in multiple brain regions and ventricular enlargement, even after controlling for intracranial volume and demographic covariates. Anxiety-related changes to brain morphology may contribute to greater AD risk.  more » « less
Award ID(s):
1920182
NSF-PAR ID:
10278162
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Innovation in Aging
Volume:
4
Issue:
Supplement_1
ISSN:
2399-5300
Page Range / eLocation ID:
371 to 372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Depression has been associated with greater risk of Alzheimer’s disease (AD), and existing research has identified structural differences in brain regions in depressed subjects compared to healthy samples, but results have been heterogeneous. We sought to determine the effect of depression on regional brain volumes by cognitive and APOE e4 status. Secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of depression (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRIs. Depression in the prior two years was associated with lower total brain, cerebrum,, and gray matter volumes and greater total brain white matter hyperintensities (p<.05). Greater volumes were also observed in all ventricular volume measures. Lower mean volumes were observed in six additional frontal lobe and parietal lobe cortical regions. Alternately, depression antecedent to the past 2 years correlated only with occipital lobe gray matter volumes (right, left, total). Our findings suggest that depression in the prior two years is associated with atrophy across multiple brain regions and related ventricular enlargement, even after controlling for intracranial volume and demographic covariates. The duration of depression influences results, however, as depression prior to 2 years before assessment was correlated with significantly fewer and different regional brain volume changes. 
    more » « less
  2. null (Ed.)
    Abstract Sleep disruption has been associated with increased beta-amyloid deposition and greater risk for later development of Alzheimer’s disease. Studies indicate that sleep disturbance correlates with regional brain volumes, but data are limited. We sought to determine the effect of sleep disturbance on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status. We conducted a secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set using complete structural imaging data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of sleep disturbance (via Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Sleep disruption was associated with greater volumes in the right and left lateral ventricles and greater volume of total white matter hyperintensities (p<.05). Lower mean volumes in total brain, total gray matter, and total cerebrum grey matter volumes, and in 12 hippocampal, frontal, parietal, and temporal lobe volumes were observed among participants who reported sleep disturbance. Males, Hispanic participants, and those with less education were more likely to report sleep disruption. Cognitive status moderated the relationship between sleep disturbance and lateral ventricular volumes, while APOE e4 moderated the effect between sleep disturbance and parietal lobe volumes. These findings suggest that disrupted sleep is associated with atrophy across multiple brain regions and ventricular hydrocephalus ex vacuo, after controlling for intracranial volume and demographic covariates. The influence of cognition and APOE e4 status indicates that this relationship is affected by co-occurring physiological processes. 
    more » « less
  3. ABSTRACT BACKGROUND AND PURPOSE

    Numerous sex‐specific differences in multiple sclerosis (MS) susceptibility, disease manifestation, disability progression, inflammation, and neurodegeneration have been previously reported. Previous magnetic resonance imaging (MRI) studies have shown structural differences between female and male MS brain volumes. To determine sex‐specific global and tissue‐specific brain volume throughout the MS life span in a real‐world large MRI database.

    METHODS

    A total of 2,199 MS patients (female/male ratio of 1,651/548) underwent structural MRI imaging on either a 1.5‐T or 3‐T scanner. Global and tissue‐specific volumes of whole brain (WBV), white matter, and gray matter (GMV) were determined by utilizing Structural Image Evaluation using Normalisation of Atrophy Cross‐sectional (SIENAX). Lateral ventricular volume (LVV) was determined with the Neurological Software Tool for REliable Atrophy Measurement (NeuroSTREAM). General linear models investigated sex and age interactions, and post hoc comparative sex analyses were performed.

    RESULTS

    Despite being age‐matched with female MS patents, a greater proportion of male MS patients were diagnosed with progressive MS and had lower normalized WBV (P < .001), GMV (P< .001), and greater LVV (P< .001). In addition to significant stand‐alone main effects, an interaction between sex and age had an additional effect on the LVV (F‐statistics = 4.53,P= .033) and GMV (F‐statistics = 4.59,P= .032). The sex and age interaction was retained in both models of LVV (F‐statistics = 3.31,P= .069) and GMV (F‐statistics = 6.1,P= .003) when disease subtype and disease‐modifying treatment (DMT) were also included. Although male MS patients presented with significantly greater LVV and lower GMV during the early and midlife period when compared to their female counterparts (P< .001 for LVV andP< .019 for GMV), these differences were nullified in 60+ years old patients. Similar findings were seen within a subanalysis of MS patients that were not on any DMT at the time of enrollment.

    CONCLUSION

    There are sex‐specific differences in the LVV and GMV over the MS life span.

     
    more » « less
  4. Abstract Study Objectives

    To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships between brain physiology, structure, and cognition.

    Methods

    We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural network-based tool, provided high-quality segmentations despite noise. A priori hypotheses explored associations between brain function (measured by PSG) and brain structure (measured by MRI). Associations with cognitive scores and dementia status were studied. An exploratory data-driven approach investigated age-structure-physiology-cognition links.

    Results

    Six hundred and twenty-three patients with sleep PSG and brain MRI data were included in this study; 160 with cognitive evaluations. Three hundred and forty-two participants (55%) were female, and age interquartile range was 52 to 69 years. Thirty-six individuals were diagnosed with dementia, 71 with mild cognitive impairment, and 326 with major depression. One hundred and fifteen individuals were evaluated for insomnia and 138 participants had an apnea–hypopnea index equal to or greater than 15. Total PSG delta power correlated positively with frontal lobe/thalamic volumes, and sleep spindle density with thalamic volume. rapid eye movement (REM) duration and amygdala volume were positively associated with cognition. Patients with dementia showed significant differences in five brain structure volumes. REM duration, spindle, and slow-oscillation features had strong associations with cognition and brain structure volumes. PSG and MRI features in combination predicted chronological age (R2 = 0.67) and cognition (R2 = 0.40).

    Conclusions

    Routine clinical data holds extended value in understanding and even clinically using brain-sleep-cognition relationships.

     
    more » « less
  5. Abstract INTRODUCTION

    Sleep duration has been associated with dementia and stroke. Few studies have evaluated sleep pattern–related outcomes of brain disease in diverse Hispanics/Latinos.

    METHODS

    The SOL‐INCA (Study of Latinos‐Investigation of Neurocognitive Aging) magnetic resonance imaging (MRI) study recruited diverse Hispanics/Latinos (35–85 years) who underwent neuroimaging. The main exposure was self‐reported sleep duration. Our main outcomes were total and regional brain volumes.

    RESULTS

    The final analytic sample includedn = 2334 participants. Increased sleep was associated with smaller brain volume (βtotal_brain = −0.05,p < 0.01) and consistently so in the 50+ subpopulation even after adjusting for mild cognitive impairment status. Sleeping >9 hours was associated with smaller gray (βcombined_gray = −0.17,p < 0.05) and occipital matter volumes (βoccipital_gray = −0.18,p < 0.05).

    DISCUSSION

    We found that longer sleep duration was associated with lower total brain and gray matter volume among diverse Hispanics/Latinos across sex and background. These results reinforce the importance of sleep on brain aging in this understudied population.

    Highlights

    Longer sleep was linked to smaller total brain and gray matter volumes.

    Longer sleep duration was linked to larger white matter hyperintensities (WMHs) and smaller hippocampal volume in an obstructive sleep apnea (OSA) risk group.

    These associations were consistent across sex and Hispanic/Latino heritage groups.

     
    more » « less