skip to main content


Title: Regional Brain Volumes Associated With Depression in the National Alzheimer’s Coordinating Center Uniform Data Set
Abstract Depression has been associated with greater risk of Alzheimer’s disease (AD), and existing research has identified structural differences in brain regions in depressed subjects compared to healthy samples, but results have been heterogeneous. We sought to determine the effect of depression on regional brain volumes by cognitive and APOE e4 status. Secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of depression (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRIs. Depression in the prior two years was associated with lower total brain, cerebrum,, and gray matter volumes and greater total brain white matter hyperintensities (p<.05). Greater volumes were also observed in all ventricular volume measures. Lower mean volumes were observed in six additional frontal lobe and parietal lobe cortical regions. Alternately, depression antecedent to the past 2 years correlated only with occipital lobe gray matter volumes (right, left, total). Our findings suggest that depression in the prior two years is associated with atrophy across multiple brain regions and related ventricular enlargement, even after controlling for intracranial volume and demographic covariates. The duration of depression influences results, however, as depression prior to 2 years before assessment was correlated with significantly fewer and different regional brain volume changes.  more » « less
Award ID(s):
1920182
NSF-PAR ID:
10278161
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Innovation in Aging
Volume:
4
Issue:
Supplement_1
ISSN:
2399-5300
Page Range / eLocation ID:
371 to 371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Anxiety has been associated with greater risk of Alzheimer’s disease (AD) and existing research has identified structural differences in regional brain tissue in anxious compared to healthy samples, but results have been variable and somewhat inconsistent. We sought to determine the effect of anxiety on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status using data from a large, national dataset. A secondary analysis of the National Alzheimer’s Coordinating Center Uniform (NACC) Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of anxiety (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Anxiety was associated with lower total brain and total cortical gray matter volumes and increased lateral ventricular volume (p<.05). Lower mean volumes were also observed in all hippocampal, frontal lobe, parietal lobe, temporal lobe, and right occipital lobe volumes among participants who reported anxiety. Conversely, greater ventricular volumes were also correlated with anxiety. Findings suggest that anxiety is associated with significant atrophy in multiple brain regions and ventricular enlargement, even after controlling for intracranial volume and demographic covariates. Anxiety-related changes to brain morphology may contribute to greater AD risk. 
    more » « less
  2. null (Ed.)
    Abstract Sleep disruption has been associated with increased beta-amyloid deposition and greater risk for later development of Alzheimer’s disease. Studies indicate that sleep disturbance correlates with regional brain volumes, but data are limited. We sought to determine the effect of sleep disturbance on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status. We conducted a secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set using complete structural imaging data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of sleep disturbance (via Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Sleep disruption was associated with greater volumes in the right and left lateral ventricles and greater volume of total white matter hyperintensities (p<.05). Lower mean volumes in total brain, total gray matter, and total cerebrum grey matter volumes, and in 12 hippocampal, frontal, parietal, and temporal lobe volumes were observed among participants who reported sleep disturbance. Males, Hispanic participants, and those with less education were more likely to report sleep disruption. Cognitive status moderated the relationship between sleep disturbance and lateral ventricular volumes, while APOE e4 moderated the effect between sleep disturbance and parietal lobe volumes. These findings suggest that disrupted sleep is associated with atrophy across multiple brain regions and ventricular hydrocephalus ex vacuo, after controlling for intracranial volume and demographic covariates. The influence of cognition and APOE e4 status indicates that this relationship is affected by co-occurring physiological processes. 
    more » « less
  3. ABSTRACT BACKGROUND AND PURPOSE

    Numerous sex‐specific differences in multiple sclerosis (MS) susceptibility, disease manifestation, disability progression, inflammation, and neurodegeneration have been previously reported. Previous magnetic resonance imaging (MRI) studies have shown structural differences between female and male MS brain volumes. To determine sex‐specific global and tissue‐specific brain volume throughout the MS life span in a real‐world large MRI database.

    METHODS

    A total of 2,199 MS patients (female/male ratio of 1,651/548) underwent structural MRI imaging on either a 1.5‐T or 3‐T scanner. Global and tissue‐specific volumes of whole brain (WBV), white matter, and gray matter (GMV) were determined by utilizing Structural Image Evaluation using Normalisation of Atrophy Cross‐sectional (SIENAX). Lateral ventricular volume (LVV) was determined with the Neurological Software Tool for REliable Atrophy Measurement (NeuroSTREAM). General linear models investigated sex and age interactions, and post hoc comparative sex analyses were performed.

    RESULTS

    Despite being age‐matched with female MS patents, a greater proportion of male MS patients were diagnosed with progressive MS and had lower normalized WBV (P < .001), GMV (P< .001), and greater LVV (P< .001). In addition to significant stand‐alone main effects, an interaction between sex and age had an additional effect on the LVV (F‐statistics = 4.53,P= .033) and GMV (F‐statistics = 4.59,P= .032). The sex and age interaction was retained in both models of LVV (F‐statistics = 3.31,P= .069) and GMV (F‐statistics = 6.1,P= .003) when disease subtype and disease‐modifying treatment (DMT) were also included. Although male MS patients presented with significantly greater LVV and lower GMV during the early and midlife period when compared to their female counterparts (P< .001 for LVV andP< .019 for GMV), these differences were nullified in 60+ years old patients. Similar findings were seen within a subanalysis of MS patients that were not on any DMT at the time of enrollment.

    CONCLUSION

    There are sex‐specific differences in the LVV and GMV over the MS life span.

     
    more » « less
  4. Abstract Objective

    Common obesity‐associated genetic variants at the fat mass and obesity‐associated (FTO) locus have been associated with appetitive behaviors and altered structure and function of frontostriatal brain regions. The authors aimed to investigate the influence ofFTOvariation on frontostriatal appetite circuits in early life.

    Methods

    Data were drawn from RESONANCE, a longitudinal study of early brain development. Growth trajectories of nucleus accumbens and frontal lobe volumes, as well as total gray matter and white matter volume, by risk allele (AA) carrier status onFTOsingle‐nucleotide polymorphism rs9939609 were examined in 228 children (102 female, 126 male) using magnetic resonance imaging assessments obtained from infancy through middle childhood. The authors fit functional concurrent regression models with brain volume outcomes over age as functional responses, andFTOgenotype, sex, BMIzscore, and maternal education were included as predictors.

    Results

    Bootstrap pointwise 95% CI for regression coefficient functions in the functional concurrent regression models showed that the AA group versus the group with no risk allele (TT) had greater nucleus accumbens volume (adjusted for total brain volume) in the interval of 750 to 2250 days (2–6 years).

    Conclusions

    These findings suggest that common genetic risk for obesity is associated with differences in early development of brain reward circuitry and argue for investigating dynamic relationships among genotype, brain, behavior, and weight throughout development.

     
    more » « less
  5. Abstract INTRODUCTION

    Sleep duration has been associated with dementia and stroke. Few studies have evaluated sleep pattern–related outcomes of brain disease in diverse Hispanics/Latinos.

    METHODS

    The SOL‐INCA (Study of Latinos‐Investigation of Neurocognitive Aging) magnetic resonance imaging (MRI) study recruited diverse Hispanics/Latinos (35–85 years) who underwent neuroimaging. The main exposure was self‐reported sleep duration. Our main outcomes were total and regional brain volumes.

    RESULTS

    The final analytic sample includedn = 2334 participants. Increased sleep was associated with smaller brain volume (βtotal_brain = −0.05,p < 0.01) and consistently so in the 50+ subpopulation even after adjusting for mild cognitive impairment status. Sleeping >9 hours was associated with smaller gray (βcombined_gray = −0.17,p < 0.05) and occipital matter volumes (βoccipital_gray = −0.18,p < 0.05).

    DISCUSSION

    We found that longer sleep duration was associated with lower total brain and gray matter volume among diverse Hispanics/Latinos across sex and background. These results reinforce the importance of sleep on brain aging in this understudied population.

    Highlights

    Longer sleep was linked to smaller total brain and gray matter volumes.

    Longer sleep duration was linked to larger white matter hyperintensities (WMHs) and smaller hippocampal volume in an obstructive sleep apnea (OSA) risk group.

    These associations were consistent across sex and Hispanic/Latino heritage groups.

     
    more » « less