A bstract We analyze the New Physics sensitivity of a recently proposed method to measure the CP-violating $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 decay rate using K S − K L interference. We present our findings both in a model-independent EFT approach as well as within several simple NP scenarios. We discuss the relation with associated observables, most notably $$ \mathcal{B} $$ B ( K L → π 0 $$ \nu \overline{\nu} $$ ν ν ¯ ). We find that simple NP models can significantly enhance $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 , making this mode a very promising probe of physics beyond the standard model in the kaon sector.
more »
« less
Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase
- Award ID(s):
- 1905320
- PAR ID:
- 10278354
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 142
- Issue:
- 44
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 18795 to 18813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We present the result of a search for the charged-lepton-flavor violating decayτ−→μ−μ+μ−using a 424 fb−1sample of data recorded by the Belle II experiment at the SuperKEKBe+e−collider. The selection ofe+e−→τ+τ−events is based on an inclusive reconstruction of the non-signal tau decay, and on a boosted decision tree to suppress background. We observe one signal candidate, which is compatible with the expectation from background processes. We set a 90% confidence level upper limit of 1.9×10−8on the branching fraction of theτ−→ μ−μ+μ−decay, which is the most stringent bound to date.more » « less
-
A bstract A sample of 2 . 8 × 10 4 K + → π + μ + μ − candidates with negligible background was collected by the NA62 experiment at the CERN SPS in 2017–2018. The model-independent branching fraction is measured to be (9 . 15 ± 0 . 08) × 10 − 8 , a factor three more precise than previous measurements. The decay form factor is presented as a function of the squared dimuon mass. A measurement of the form factor parameters and their uncertainties is performed using a description based on Chiral Perturbation Theory at $$ \mathcal{O} $$ O ( p 6 ).more » « less
-
A<sc>bstract</sc> The differential branching fraction and angular coefficients of$$ {\Lambda}_b^0 $$ →pK−μ+μ−decays are measured in bins of the dimuon mass squared and dihadron mass. The analysis is performed using a data set corresponding to 9 fb−1of integrated luminosity collected with the LHCb detector between 2011 and 2018. The data are consistent with receiving contributions from a mixture of Λ resonances with different spin-parity quantum numbers. The angular coefficients show a pattern of vector-axial vector interference that is a characteristic of the type of flavour-changing neutral-current transition relevant for these decays.more » « less
-
A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ → μ+μ−γdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.more » « less
An official website of the United States government

