Lifting heavy weight is one of the main reasons for manual material handling related injuries which can be mitigated by determining the limiting lifting weight of a person. In this study, a 40 degrees of freedom (DOFs) spatial skeletal model was employed to predict the symmetric maximum weight lifting motion. The lifting problem was formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse-dynamics-based optimization approach was used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight were shown to match well with the experimental results. It was found that for the three-dimensional (3D) symmetric lifting the left and right GRFs were not same.
- PAR ID:
- 10278795
- Date Published:
- Journal Name:
- Journal of Computing and Information Science in Engineering
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1530-9827
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)
Abstract -
null (Ed.)In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.more » « less
-
This article presents an optimization formulation and experimental validation of a dynamic-joint-strength-based two-dimensional symmetric maximum weight-lifting simulation. Dynamic joint strength (the net moment capacity as a function of joint angle and angular velocity), as presented in the literature, is adopted in the optimization formulation to predict the symmetric maximum lifting weight and corresponding motion. Nineteen participants were recruited to perform a maximum-weight-box-lifting task in the laboratory, and kinetic and kinematic data including motion and ground reaction forces were collected using a motion capture system and force plates, respectively. For each individual, the predicted spine, shoulder, elbow, hip, knee, and ankle joint angles, as well as vertical and horizontal ground reaction force and box weight, were compared with the experimental data. Both root-mean-square error and Pearson’s correlation coefficient ( r) were used for the validation. The results show that the proposed two-dimensional optimization-based motion prediction formulation is able to accurately predict all joint angles, box weights, and vertical ground reaction forces, but not horizontal ground reaction forces.more » « less
-
In this study, a 3D asymmetric lifting motion is predicted by using a hybrid predictive model to prevent potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics-based motion optimization method. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the predicted kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool in OpenSim. The predicted asymmetric motion and GRFs are validated with experimental data. Muscle activation results between the simulated and experimental EMG are also compared to validate the model. Finally, the shear and compression spine loads are compared to NIOSH recommended limits. The differences between asymmetric and symmetric liftings are also compared.
-
Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.