Summary Variation in leaf venation network architecture may reflect trade‐offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture‐function trade‐offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade‐offs.Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade‐offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.We found that generalized architecture‐function trade‐offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale.This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
more »
« less
Practical Random Access to SLP-Compressed Texts
Grammar-based compression is a popular and powerful approach to compressing repetitive texts but until recently its relatively poor time-space trade-offs during real-life construction made it impractical for truly massive datasets such as genomic databases. In a recent paper (SPIRE 2019) we showed how simple pre-processing can dramatically improve those trade-offs, and in this paper we turn our attention to one of the features that make grammar-based compression so attractive: the possibility of supporting fast random access. This is an essential primitive in many algorithms that process grammar-compressed texts without decompressing them and so many theoretical bounds have been published about it, but experimentation has lagged behind. We give a new encoding of grammars that is about as small as the practical state of the art (Maruyama et al., SPIRE 2013) but with significantly faster queries.
more »
« less
- Award ID(s):
- 2029552
- PAR ID:
- 10278822
- Date Published:
- Journal Name:
- SPIRE 2020
- Volume:
- 12303
- Page Range / eLocation ID:
- 221-231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Developers spend a significant portion of their time searching for solutions and methods online. While numerous tools have been developed to support this exploratory process, in many cases the answers to developers’ questions involve trade-offs among multiple valid options and not just a single solution. Through interviews, we discovered that developers express a desire for help with decision-making and understanding trade-offs. Through an analysis of Stack Overflow posts, we observed that many answers describe such trade-offs. These findings suggest that tools designed to help a developer capture information and make decisions about trade-offs can provide crucial benefits for both the developers and others who want to understand their design rationale. In this work, we probe this hypothesis with a prototype system named Unakite that collects, organizes, and keeps track of information about tradeoffs and builds a comparison table, which can be saved as a design rationale for later use. Our evaluation results show that Unakite reduces the cost of capturing tradeoff-related information by 45%, and that the resulting comparison table speeds up a subsequent developer’s ability to understand the trade-offs by about a factor of three.more » « less
-
Innate, infection-preventing resistance often varies between host life stages. Juveniles are more resistant than adults in some species, whereas the opposite pattern is true in others. This variation cannot always be explained by prior exposure or physiological constraints and so it has been hypothesized that trade-offs with other life-history traits may be involved. However, little is known about how trade-offs between various life-history traits and resistance at different life stages affect the evolution of age-specific resistance. Here, we use a mathematical model to explore how trade-offs with natural mortality, reproduction and maturation combine to affect the evolution of resistance at different life stages. Our results show that certain combinations of trade-offs have substantial effects on whether adults or juveniles are more resistant, with trade-offs between juvenile resistance and adult reproduction inherently more costly than trade-offs involving maturation or mortality (all else being equal), resulting in consistent evolution of lower resistance at the juvenile stage even when infection causes a lifelong fecundity reduction. Our model demonstrates how the differences between patterns of age-structured resistance seen in nature may be explained by variation in the trade-offs involved and our results suggest conditions under which trade-offs tend to select for lower resistance in juveniles than adults.more » « less
-
Lipták, Zsuzsanna; Moura, Edleno; Figueroa, Karina; Baeza-Yates, Ricardo (Ed.)Grammar-based compression is a widely-accepted model of string compression that allows for efficient and direct manipulations on the compressed data. Most, if not all, such manipulations rely on the primitive random access queries, a task of quickly returning the character at a specified position of the original uncompressed string without explicit decompression. While there are advanced data structures for random access to grammar-compressed strings that guarantee theoretical query time and space bounds, little has been done for the practical perspective of this important problem. In this paper, we revisit a well-known folklore random access algorithm for grammars in the Chomsky normal form, modify it to work directly on general grammars, and show that this modified version is fast and memory efficient in practice.more » « less
-
Spamming reviews are prevalent in review systems to manipulate seller reputation and mislead customers. Spam detectors based on graph neural networks (GNN) exploit representation learning and graph patterns to achieve state-of-the-art detection accuracy. The detection can influence a large number of real-world entities and it is ethical to treat different groups of entities as equally as possible. However, due to skewed distributions of the graphs, GNN can fail to meet diverse fairness criteria designed for different parties. We formulate linear systems of the input features and the adjacency matrix of the review graphs for the certification of multiple fairness criteria. When the criteria are competing, we relax the certification and design a multi-objective optimization (MOO) algorithm to explore multiple efficient trade-offs, so that no objective can be improved without harming another objective. We prove that the algorithm converges to a Pareto efficient solution using duality and the implicit function theorem. Since there can be exponentially many trade-offs of the criteria, we propose a data-driven stochastic search algorithm to approximate Pareto fronts consisting of multiple efficient trade-offs. Experimentally, we show that the algorithms converge to solutions that dominate baselines based on fairness regularization and adversarial training.more » « less
An official website of the United States government

