skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Geometry to Enable High-Strength Continuum Robots
Developing high-strength continuum robots can be challenging without compromising on the overall size of the robot, the complexity of design and the range of motion. In this work, we explore how the load capacity of continuum robots can drastically be improved through a combination of backbone design and convergent actuation path routing. We propose a rhombus-patterned backbone structure composed of thin walled-plates that can be easily fabricated via 3D printing and exhibits high shear and torsional stiffness while allowing bending. We then explore the effect of combined parallel and converging actuation path routing and its influence on continuum robot strength. Experimentally determined compliance matrices are generated for straight, translation and bending configurations for analysis and discussion. A robotic actuation platform is constructed to demonstrate the applicability of these design choices.  more » « less
Award ID(s):
1652588
PAR ID:
10278823
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
8
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality. 
    more » « less
  2. Continuum and soft robots can leverage routed actuation schemes to take on useful shapes with few actuated degrees of freedom. The addition of vine-like growth to soft continuum robots opens up possibilities for creating deployable structures from compact packages and allowing manipulation and grasping of objects in cluttered or difficult-to-navigate environments. Helical shapes, with constant curvature and torsion, provide a starting point for the shapes and actuation strategies required for such applications. Building on the geometric and static solutions for continuum robot kinematics given constant curvature assumptions, we develop a static model of helical actuation and present the implementation and validation of this model. We also discuss the forces applied by the soft robot when wrapped around an object that deforms the static shape, allowing a quantification of grasping capabilities. 
    more » « less
  3. Abstract This paper seeks to design, develop, and explore the locomotive dynamics and morphological adaptability of a bacteria-inspired rod-like soft robot propelled in highly viscous Newtonian fluids. The soft robots were fabricated as tapered, hollow rod-like soft scaffolds by applying a robust and economic molding technique to a polyacrylamide-based hydrogel polymer. Cylindrical micro-magnets were embedded in both ends of the soft scaffolds, which allowed bending (deformation) and actuation under a uniform rotating magnetic field. We demonstrated that the tapered rod-like soft robot in viscous Newtonian fluids could perform two types of propulsion; boundary rolling was displayed when the soft robot was located near a boundary, and swimming was displayed far away from the boundary. In addition, we performed numerical simulations to understand the swimming propulsion along the rotating axis and the way in which this propulsion is affected by the soft robot’s design, rotation frequency, and fluid viscosity. Our results suggest that a simple geometrical asymmetry enables the rod-like soft robot to perform propulsion in the low Reynolds number ( Re ≪ 1) regime; these promising results provide essential insights into the improvements that must be made to integrate the soft robots into minimally invasive in vivo applications. 
    more » « less
  4. We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially around a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneu- matic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds. 
    more » « less
  5. Controlling soft continuum robotic arms is challenging due to their hyper-redundancy and dexterity. In this paper we experimentally demonstrate, for the first time, closed-loop control of the configuration space variables of a soft robotic arm, composed of independently controllable segments, using a Cosserat rod model of the robot and the distributed sensing and actuation capabilities of the segments. Our controller solves the inverse dynamic problem by simulating the Cosserat rod model in MATLAB using a computationally efficient numerical solution scheme, and it applies the computed control output to the actual robot in real time. The position and orientation of the tip of each segment are measured in real time, while the remaining unknown variables that are needed to solve the inverse dynamics are estimated simultaneously in the simulation. We implement the controller on a multi-segment silicone robotic arm with pneumatic actuation, using a motion capture system to measure the segments' positions and orientations. The controller is used to reshape the arm into configurations that are achieved through combinations of bending and extension deformations in 3D space. Although the possible deformations are limited for this robot platform, our study demonstrates the potential for implementing the control approach on a wide range of continuum robots in practice. The resulting tracking performance indicates the effectiveness of the controller and the accuracy of the simulated Cosserat rod model. 
    more » « less