skip to main content


Title: Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide
Abstract Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.  more » « less
Award ID(s):
1832210 1655896 1926438 1831952
NSF-PAR ID:
10278831
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the effects of tree species and their mycorrhizal association on soil processes is critical for predicting the ecosystem consequences of species shifts owing to global change and forest management decisions. While it is well established that forests dominated by different mycorrhizal types can vary in how they cycle carbon (C), nitrogen (N) and phosphorus (P), the degree to which these patterns are driven by microbial‐mediated enzyme activity (EA) and ecoenzymatic stoichiometry (ES) remains elusive. Here, we synthesized the effects of mycorrhizal association on seven soil enzymes involved in microbial C, N and P acquisition and ES using data from 56 peer‐reviewed papers. We found that relative to soil in ectomycorrhizal (EcM) trees, soil in arbuscular mycorrhizal (AM) trees exhibited greater activity of some C acquisition enzymes (e.g. beta‐glucosidase; BG) and higher ecoenzymatic ratios of BG/NAG (N‐acetyl‐glucosaminidase) and BG/AP (acid phosphatase). These results supported that AM trees had rapid C and nutrient turnover rates, inorganic nutrient economics and high soil microbial C limitation. We also found evidence for an organic nutrient economy and greater soil microbial demand for nutrients in EcM trees compared to AM trees. In addition, the effect of mycorrhizal association on the activity of certain soil enzymes and enzymatic stoichiometry (i.e. BG and BG/NAG ratio) appeared to be associated with the differences in soil pH, phylogenetic group (i.e. conifers and broadleaves) and leaf habit (i.e. evergreen and deciduous) between AM and EcM trees. The results from the global meta‐analysis suggested that soil EA and ES appear to play critical roles in shaping the differences in the nutrient economy between AM and EcM tree species, but leaf morphology and soil conditions should be considered in evaluations of soil processes in forests of different mycorrhizal associations. Given that most of the studies in the database were from the temperate and subtropical regions, further research in other biomes is needed to elucidate the underlying mechanisms driving the mycorrhizal effect at the global scale. Read the free Plain Language Summary for this article on the Journal blog. 
    more » « less
  2. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less
  3. Yavitt, Joseph B. (Ed.)
    As global change shifts the species composition of forests, we need to understand which species characteristics affect soil organic matter cycling to predict future soil carbon (C) storage. Recently, whether a tree species forms a symbiosis with arbuscular (AM) versus ectomycorrhizal (EcM) fungi has been suggested as a strong predictor of soil carbon storage, but there is wide variability within EcM systems. In this study, we investigated how mycorrhizal associations and the species composition of canopy trees and mycorrhizal fungi relate to the proportion of soil C and nitrogen (N) in mineral-associations and soil C:N across four sites representing distinct climates and tree communities in the Eastern U.S. broadleaf forest biome. In two of our sites, we found the expected relationship of declining mineral-associated C and N and increasing soil C:N ratios as the basal area of EcM-associating trees increased. However, across all sites these soil properties strongly correlated with canopy tree and fungal species composition. Sites where the expected pattern with EcM basal area was observed were 1) dominated by trees with lower quality litter in the Pinaceae and Fagaceae families and 2) dominated by EcM fungi with medium distance exploration type hyphae, melanized tissues, and the potential to produce peroxidases. This observational study demonstrates that differences in soil organic matter between AM andEcM systems are dependent on the taxa of trees and EcM fungi involved. Important information is lost when the rich mycorrhizal symbiosis is reduced to two categories. 
    more » « less
  4. Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- vs. ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Abstract

    Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.

     
    more » « less