skip to main content


Title: Can artificial retreat sites help frogs recover after severe habitat devastation? Insights on the use of “coqui houses” after Hurricane Maria in Puerto Rico
On September 2017, Hurricane Maria swept over Puerto Rico as a Category 4 storm. Severe canopy loss, augmentation of forest floor debris, and a significant increase in temperature and light reaching the understory were among the most evident changes at El Yunque National Forest, where a population of Eleutherodactylus coqui frogs has been monitored over the past 30 years. When sampling was re-established, the frogs could be heard calling, but it was very difficult to find them among the complexity of vegetation in the forest floor. We inferred that canopy disturbance had left frogs without optimal arboreal habitats for retreat, nocturnal perching, feeding, and reproductive activities, and wondered whether they would use artificial habitats placed in the forest understory. To test this, two types of artificial habitats (i.e., “coqui houses”) were introduced in the forest understory, consisting of either open PVC pipes or single-entrance natural bamboo shoots. Surveys were conducted twice a month for 15 months in an experimental transect with coqui houses, and a control transect without them. Data were collected on the occupancy rate of the artificial sites, type of usage, time of day occupied, and the number of E. coqui observed. The effects of time since the hurricane, microhabitat temperature, type of coqui house, and seasonality on the occupancy rate were also evaluated. Results showed that coquis used bamboo houses mostly during daytime as retreat and nesting sites, whereas the PVC houses were used mostly at night as calling sites. Daytime occupancy of coqui houses showed a significant bell-shaped pattern over time since the hurricane. This may be explained by a steady increase in usage after severe forest damage, a peak during the stressful cool-dry season, and a decline afterwards as the forest began to recover. No differences were found in frog counts between experimental and control transects, probably because the coquis could also hide among the fallen vegetation, but either disparities in forest conditions or inappropriateness of the methods for estimating population numbers may have overshadowed this effect. Coquis used artificial houses more often during the most stressful environmental conditions, suggesting that these shelters may serve to enhance habitat quality for amphibians after extreme weather events.  more » « less
Award ID(s):
2011281
NSF-PAR ID:
10278842
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Hassapakis, Craig; Grieneisen, M.
Date Published:
Journal Name:
Amphibian reptile conservation
Volume:
15
Issue:
1
ISSN:
1083-446X
Page Range / eLocation ID:
57–70 (e274)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forest insect outbreaks cause large changes in ecosystem structure, composition, and function. Humans often respond to insect outbreaks by conducting salvage logging, which can amplify the immediate effects, but it is unclear whether logging will result in lasting differences in forest structure and dynamics when compared with forests affected only by insect outbreaks. We used 15 years of data from an experimental removal ofTsuga canadensis(L.) Carr. (Eastern hemlock), a foundation tree species within eastern North American forests, and contrasted the rate, magnitude, and persistence of response trajectories between girdling (emulating mortality from insect outbreak) and timber harvest treatments. Girdling and logging were equally likely to lead to large changes in forest structure and dynamics, but logging resulted in faster rates of change. Understory light increases and community composition changes were larger and more rapid in the logged plots. Tree seedling and understory vegetation abundance increased more in the girdled plots; this likely occurred because seedlings grew rapidly into the sapling‐ and tree‐size classes after logging and quickly shaded out plants on the forest floor. Downed deadwood pools increased more after logging but standing deadwood pools increased dramatically after girdling. Understory light levels remained elevated for a longer time after girdling. Perhaps because the window of opportunity for understory species to establish was longer in the girdled plots, total species richness increased more in the girdled than logged plots. Despite the potential for greater diversity in the girdled plots,Betula lentaL. (black birch) was the most abundant tree species recruited into the sapling‐ and tree‐size classes in both the girdled and logged plots and is poised to dominate the new forest canopy. The largest difference between the girdling and logging treatments—deadwood structure and quantity—will persist and continue to bolster aboveground carbon storage and structural and habitat diversity in the girdled plots. Human responses to insect outbreaks hasten forest reorganization and remove structural resources that may further alter forest response to ongoing climate stress and future disturbances.

     
    more » « less
  2. Mangrove forests along the coastlines of the tropical and sub-tropical western Atlantic are intermittently impacted by hurricanes and can be damaged by high-speed winds, high-energy storm surges, and storm surge sediment deposits that suffocate tree roots. This study quantified trends in damage, delayed mortality, and early signs of below- and aboveground recovery in mangrove forests in the Lower Florida Keys and Ten Thousand Islands following direct hits by Hurricane Irma in September 2017. Mangrove trees suffered 19% mortality at sites in the Lower Florida Keys and 11% in the Ten Thousand Islands 2–3 months post-storm; 9 months post-storm, mortality in these locations increased to 36% and 20%, respectively. Delayed mortality of mangrove trees was associated with the presence of a carbonate mud storm surge deposit on the forest floor. Mortality and severe branch damage were more common for mangrove trees than for mangrove saplings. Canopy coverage increased from 40% cover 1–2 months post-storm to 60% cover 3–6 months post-storm. Canopy coverage remained the same 9 months post-storm, providing light to an understory of predominantly Rhizophora mangle (red mangrove) seedlings. Soil shear strength was higher in the Lower Florida Keys and varied with depth; no significant trends were found in shear strength between fringe or basin plots. Rates of root growth, as assessed using root in-growth bags, were relatively low at 0.01–11.0 g m−2 month−1 and were higher in the Ten Thousand Islands. This study demonstrated that significant delayed mangrove mortality can occur 3–9 months after a hurricane has passed, with some mortality attributable to smothering by storm surge deposits. 
    more » « less
  3. Abstract

    Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (Rattus rattus[rats] andMus musculus[mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidoniaandPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuareaandPrestoeaacross all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance.

     
    more » « less
  4. Abstract

    The habitat affinities of carrion beetles (Coleoptera: Silphidae), a speciose group with wide cooccurrence, are only coarsely described for well‐studied species, particularly in the western United States.

    We aim to identify if the 15 species of montane carrion beetle in Colorado differ substantially in their use of habitats and across more uniquely defined, fine‐scale vegetation characteristics.

    Habitat and vegetation data as well as carrion beetle abundance were collected along four elevational transects in the Front Range and San Juan Mountains from 2010 to 2012 across 32 sites. Multiple habitat types were sampled, including forest, meadow, riparian, rocky outcrops and tundra. The fine‐scale vegetation characteristics included percent coverage of ground vegetation (grass, forb, shrub, cacti, bare ground), understory vegetation biomass and height, canopy cover and tree species, number and size. Canonical correspondence analysis models examined whether vegetation characteristics strongly segregated species using abundances and presence‐absences.

    Habitat and vegetation models explained a maximum of 18.93% of the variation in species' abundances and 2.48% in species' presence–absences. Only one likely habitat specialist was identified by the models (Heterosilpha ramosa) and the remaining species had substantial overlap in habitat and vegetation use. The arid, low productivity and generally open understory habitats in Colorado mountains likely play a large role in the substantial vegetation overlap.

    Other mechanisms of partitioning likely exist in this system to reduce niche overlap, which could include differences in activity time and seasonality, physiological traits, other life history strategies and body size.

     
    more » « less
  5. INTRODUCTION Inherent in traditional views of ape origins is the idea that, like living apes, early large-bodied apes lived in tropical forests. In response to constraints related to locomoting in forest canopies, it has been proposed that early apes evolved their quintessential upright torsos and acrobatic climbing and suspensory abilities, enhancing their locomotor versatility, to distribute their weight among small supports and thus reach ripe fruit in the terminal branches. This feeding and locomotor transition from a quadruped with a horizontal torso is thought to have occurred in the Middle Miocene due to an increasingly seasonal climate and feeding competition from evolving monkeys. Although ecological and behavioral comparisons among living apes and monkeys provide evidence for versions of terminal branch forest frugivory hypotheses, corroboration from the early ape fossil record has been lacking, as have detailed reconstructions of the habitats where the first apes evolved. RATIONALE The Early Miocene fossil site of Moroto II in Uganda provides a unique opportunity to test the predictions of terminal branch forest frugivory hypotheses. Moroto II documents the oldest [21 million years ago (Ma)] well-established paleontological record of ape teeth and postcranial bones from a single locality and preserves paleoecological proxies to reconstruct the environment. The following lines of evidence from Moroto II were analyzed: (i) the functional anatomy of femora and a vertebra attributed to the ape Morotopithecus ; (ii) dental traits, including molar shape and isotopic profiles of Morotopithecus enamel; (iii) isotopic dietary paleoecology of associated fossil mammals; (iv) biogeochemical signals from paleosols (ancient soils) that reflect local relative proportions of C 3 (trees and shrubs) and C 4 (tropical grasses and sedges that can endure water stress) vegetation as well as rainfall; and (v) assemblages of phytoliths, microscopic plant-derived silica bodies that reflect past plant communities. RESULTS A short, strong femur biomechanically favorable to vertical climbing and a vertebra indicating a dorsostable lower back confirm that ape fossils from Moroto II shared locomotor traits with living apes. Both Morotopithecus and a smaller ape from the site have elongated molars with well-developed crests for shearing leaves. Carbon isotopic signatures of the enamel of these apes and of other fossil mammals indicate that some mammals consistently fed on water-stressed C 3  plants, and possibly also C 4  vegetation, in a woodland setting. Carbon isotope values of pedogenic carbonates, paleosol organic matter, and plant waxes all point to substantial C 4 grass biomass on the landscape. Analysis of paleosols also indicates subhumid, strongly seasonal rainfall, and phytolith assemblages include forms from both arid-adapted C 4 grasses and forest-indicator plants. CONCLUSION The ancient co-occurrence of dental specializations for leaf eating, rather than ripe fruit consumption, along with ape-like locomotor abilities counters the predictions of the terminal branch forest frugivory hypotheses. The combined paleoecological evidence situates Morotopithecus in a woodland with a broken canopy and substantial grass understory including C 4 species. These findings call for a new paradigm for the evolutionary origins of early apes. We propose that seasonal, wooded environments may have exerted previously unrecognized selective pressures in the evolution of arboreal apes. For example, some apes may have needed to access leaves in the higher canopy in times of low fruit availability and to be adept at ascending and descending from trees that lacked a continuous canopy. Hominoid habitat comparisons. Shown are reconstructions of a traditionally conceived hominoid habitat ( A ) and the 21 Ma Moroto II, Uganda, habitat ( B ). 
    more » « less