skip to main content


This content will become publicly available on March 14, 2025

Title: Logging response alters trajectories of reorganization after loss of a foundation tree species
Abstract

Forest insect outbreaks cause large changes in ecosystem structure, composition, and function. Humans often respond to insect outbreaks by conducting salvage logging, which can amplify the immediate effects, but it is unclear whether logging will result in lasting differences in forest structure and dynamics when compared with forests affected only by insect outbreaks. We used 15 years of data from an experimental removal ofTsuga canadensis(L.) Carr. (Eastern hemlock), a foundation tree species within eastern North American forests, and contrasted the rate, magnitude, and persistence of response trajectories between girdling (emulating mortality from insect outbreak) and timber harvest treatments. Girdling and logging were equally likely to lead to large changes in forest structure and dynamics, but logging resulted in faster rates of change. Understory light increases and community composition changes were larger and more rapid in the logged plots. Tree seedling and understory vegetation abundance increased more in the girdled plots; this likely occurred because seedlings grew rapidly into the sapling‐ and tree‐size classes after logging and quickly shaded out plants on the forest floor. Downed deadwood pools increased more after logging but standing deadwood pools increased dramatically after girdling. Understory light levels remained elevated for a longer time after girdling. Perhaps because the window of opportunity for understory species to establish was longer in the girdled plots, total species richness increased more in the girdled than logged plots. Despite the potential for greater diversity in the girdled plots,Betula lentaL. (black birch) was the most abundant tree species recruited into the sapling‐ and tree‐size classes in both the girdled and logged plots and is poised to dominate the new forest canopy. The largest difference between the girdling and logging treatments—deadwood structure and quantity—will persist and continue to bolster aboveground carbon storage and structural and habitat diversity in the girdled plots. Human responses to insect outbreaks hasten forest reorganization and remove structural resources that may further alter forest response to ongoing climate stress and future disturbances.

 
more » « less
NSF-PAR ID:
10495630
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species,Cyathea arboreaandCecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary‐successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late‐successional species, such asManilkara bidentataandSloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled.

     
    more » « less
  2. Global climate change has led to rising temperatures and to more frequent and intense climatic events, such as storms and droughts. Changes in climate and disturbance regimes can have non-additive effects on plant communities and result in complicated legacies we have yet to understand. This is especially true for tropical forests, which play a significant role in regulating global climate. We used understory vegetation data from the Tropical Responses to Altered Climate Experiment (TRACE) in Puerto Rico to evaluate how plant communities responded to climate warming and disturbance. The TRACE understory vegetation was exposed to a severe drought (2015), 2 years of experimental warming (4°C above ambient in half of the plots, 2016–2017 and 2018–2019), and two major hurricanes (Irma and María, September 2017). Woody seedlings and saplings were censused yearly from 2015 to 2019, with an additional census in 2015 after the drought ended. We evaluated disturbance-driven changes in species richness, diversity, and composition across ontogeny. We then used Bayesian predictive trait modeling to assess how species responded to disturbance and how this might influence the functional structure of the plant community. Our results show decreased seedling richness after hurricane disturbance, as well as increased sapling richness and diversity after warming. We found a shift in species composition through time for both seedlings and saplings, yet the individual effects of each disturbance were not significant. At both ontogenetic stages, we observed about twice as many species responding to experimental warming as those responding to drought and hurricanes. Predicted changes in functional structure point to disturbance-driven functional shifts toward a mixture of fast-growing and drought-tolerant species. Our findings demonstrate that the tropical forest understory community is more resistant to climatic stressors than expected, especially at the sapling stage. However, early signs of changes in species composition suggest that, in a warming climate with frequent droughts and hurricanes, plant communities might shift over time toward fast-growing or drought-tolerant species. 
    more » « less
  3. null (Ed.)
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
    more » « less
  4. Abstract

    Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (Rattus rattus[rats] andMus musculus[mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidoniaandPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuareaandPrestoeaacross all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance.

     
    more » « less
  5. Abstract

    Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high‐severity wildfires in forests with historically frequent, low‐severity fire regimes are increasingly common, but long‐term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20‐year responses to thinning and prescribed burning treatments commonly used in dry, low‐elevation forests of the western United States from a long‐term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short‐term (<4 years) and mid‐term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB;Dendroctonus ponderosae) outbreak that impacted the site 5–10 years post‐treatment and describe 20‐year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB‐induced changes to forest structure and fuels increased the fire hazard 20 years post‐treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience.

     
    more » « less