skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of local stellar radiation and dust depletion on non-equilibrium interstellar chemistry
ABSTRACT Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$$_{158 \rm {\mu m}}$$, [O i]$$_{63 \rm {\mu m}}$$, [O iii]$$_{88 \rm {\mu m}}$$, [N ii]$$_{122 \rm {\mu m}}$$, and H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$$_{88 \rm {\mu m}}$$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.  more » « less
Award ID(s):
2108230 1715216 1652522
PAR ID:
10373619
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1557-1583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present self-consistent radiation hydrodynamic simulations of hydrogen reionization performed with arepo-rt complemented by a state-of-the-art galaxy formation model. We examine how photoheating feedback, due to reionization, shapes the galaxies properties. Our fiducial model completes reionization by z ≈ 6 and matches observations of the Ly α forest, the cosmic microwave background electron scattering optical depth, the high-redshift ultraviolet (UV) luminosity function, and stellar mass function. Contrary to previous works, photoheating suppresses star formation rates by more than $$50{{\ \rm per\ cent}}$$ only in haloes less massive than ∼108.4 M⊙ (∼108.8 M⊙) at z = 6 (z = 5), suggesting inefficient photoheating feedback from photons within galaxies. The use of a uniform UV background that heats up the gas at z ≈ 10.7 generates an earlier onset of suppression of star formation compared to our fiducial model. This discrepancy can be mitigated by adopting a UV background model with a more realistic reionization history. In the absence of stellar feedback, photoheating alone is only able to quench haloes less massive than ∼109 M⊙ at z ≳ 5, implying that photoheating feedback is sub-dominant in regulating star formation. In addition, stellar feedback, implemented as a non-local galactic wind scheme in the simulations, weakens the strength of photoheating feedback by reducing the amount of stellar sources. Most importantly, photoheating does not leave observable imprints in the UV luminosity function, stellar mass function, or the cosmic star formation rate density. The feasibility of using these observables to detect imprints of reionization therefore requires further investigation. 
    more » « less
  2. ABSTRACT We present Herschel–PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63 μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, $$L_{\rm [O\, {\small I}]63\, \mu m} = (3.9\pm 0.7)\times 10^9$$ L⊙. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800 cm−3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O i]63 μm line luminosity, $$L_{\rm [O\, {\small I}]63\, \mu m} = (1.1\pm 0.2)\times 10^9$$ L⊙. We find that the implied luminosity ratio, $$L_{\rm [O\, {\small I}]63\, \mu m}/L_{\rm IR}$$, of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O i]63 μm line luminosities observed in BzK-21000 and the z ∼ 1−3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas. 
    more » « less
  3. ABSTRACT Motivated by the early excess of bright galaxies seen by JWST, we run zoom-in cosmological simulations of a massive galaxy at Cosmic Dawn, in a halo of $$10^{11} {\rm M}_\odot$$ at $z = 9$, using the hydro-gravitational code ramses at an effective resolution $$\sim 10~{\rm pc}$$. We investigate physical mechanisms that enhance the star formation efficiencies (SFEs) at the high gas densities of the star-forming regions in this galaxy ($$\sim 3\times 10^3~{\rm cm^{-3}}$$, $$\sim 10^4~{\rm M}_\odot \,{\rm pc^{-2}}$$). Our fiducial star formation recipe uses a physically motivated, turbulence-based, multi-freefall model, avoiding ad hoc extrapolation from lower redshifts. By $z = 9$, our simulated galaxy is a clumpy, thick, rotating disc with a high stellar mass $$\sim 3\times 10^9~{\rm M}_\odot$$ and high star formation rate $$\sim 50~{\rm M}_\odot \,{\rm yr^{-1}}$$. The high gas density makes supernova (SN) feedback less efficient, producing a high local SFE $$\gtrsim 10~{{\ \rm per\ cent}}$$. The global SFE is set by feedback-driven outflows and only weakly correlated with the local SFE. Photoionization heating makes SN feedback more efficient, but the integrated SFE always remains high. Intense accretion at Cosmic Dawn seeds turbulence that reduces local SFE, but this only weakly affects the global SFE. The star formation histories of our simulated galaxies are similar to observed massive galaxies at Cosmic Dawn, despite our limited resolution. We set the stage for future simulations which treat radiation self-consistently and use a higher effective resolution $$\sim 1~{\rm pc}$$ that captures the physics of star-forming clouds. 
    more » « less
  4. Of the almost 40 star-forming galaxies at z≳ 5 (not counting quasi-stellar objects) observed in [{{C}} {{II}}] to date, nearly half are either very faint in [{{C}} {{II}}] or not detected at all, and fall well below expectations based on locally derived relations between star formation rate and [{{C}} {{II}}] luminosity. This has raised questions as to how reliable [{{C}} {{II}}] is as a tracer of star formation activity at these epochs and how factors such as metallicity might affect the [{{C}} {{II}}] emission. Combining cosmological zoom simulations of galaxies with SÍGAME (SImulator of GAlaxy Millimeter/submillimeter Emission), we modeled the multiphased interstellar medium (ISM) and its emission in [{{C}} {{II}}], as well as in [O I] and [O III], from 30 main-sequence galaxies at z≃ 6 with star formation rates ˜3-23 {M}⊙ {yr}}-1, stellar masses ˜ (0.7{--}8)× {10}9 {M}⊙ , and metallicities ˜ (0.1{--}0.4)× {Z}⊙ . The simulations are able to reproduce the aforementioned [{{C}} {{II}}] faintness of some normal star-forming galaxy sources at z≥slant 5. In terms of [O I] and [O III], very few observations are available at z≳ 5, but our simulations match two of the three existing z≳ 5 detections of [O III] and are furthermore roughly consistent with the [O I] and [O III] luminosity relations with star formation rate observed for local starburst galaxies. We find that the [{{C}} {{II}}] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ˜66% and ˜27%, respectively. The molecular gas, which constitutes only ˜ 10 % of the total gas mass, is thus a more efficient emitter of [{{C}} {{II}}] than the ionized gas, which makes up ˜85% of the total gas mass. A principal component analysis shows that the [{{C}} {{II}}] luminosity correlates with the star formation activity of a galaxy as well as its average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [{{C}} {{II}}] faintness, and we suggest that these factors may also be responsible for the [{{C}} {{II}}]-faint normal galaxies observed at these early epochs. 
    more » « less
  5. ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $$[\rm O \,{\small III}]$$ luminosity functions up to z = 8. The predicted H β + $$[\rm O \,{\small III}]$$ luminosity functions are consistent with present observations at z ≲ 3 with $${\lesssim} 0.1\, {\rm dex}$$ differences in luminosities. However, the predicted H α luminosity function is $${\sim }0.3\, {\rm dex}$$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours and stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colours, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high-redshift galaxies. Future James Webb Space Telecope observations will further test these predictions. 
    more » « less