Knowledge graph has been widely used in fact checking, owing to its capability to provide crucial background knowledge to help verify claims. Traditional fact checking works mainly focus on analyzing a single claim but have largely ignored analysis on the semantic consistency of pair-wise claims, despite its key importance in the real-world applications, e.g., multimodal fake news detection. This paper proposes a graph neural network based model INSPECTOR for pair-wise fact checking. Given a pair of claims, INSPECTOR aims to detect the potential semantic inconsistency of the input claims. The main idea of INSPECTOR is to use a graph attention neural network to learn a graph embedding for each claim in the pair, then use a tensor neural network to classify this pair of claims as consistent vs. inconsistent. The experiment results show that our algorithm outperforms state-of-the-art methods, with a higher accuracy and a lower variance. 
                        more » 
                        « less   
                    
                            
                            ‘Highly Partisan’ and ‘Blatantly Wrong’: Analyzing News Publishers’ Critiques of Google’s Reviewed Claims
                        
                    
    
            Google’s reviewed claims feature was an early attempt to incorporate additional credibility signals from fact-checking onto the search results page. The feature, which appeared when users searched for the name of a subset of news publishers, was criticized by dozens of publishers for its errors and alleged anticonservative bias. By conducting an audit of news publisher search results and focusing on the critiques of publishers, we find that there is a lack of consensus between fact-checking ecosystem stakeholders that may be important to address in future iterations of public facing fact-checking tools. In particular, we find that a lack of transparency coupled with a lack of consensus on what makes a fact-check relevant to a news article led to the breakdown of reviewed claims. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1751087
- PAR ID:
- 10278902
- Editor(s):
- De Cristofaro, Emiliano; Nakov, Preslav
- Date Published:
- Journal Name:
- Proceedings of the 2020 Truth and Trust Online Conference (TTO 2020)
- Page Range / eLocation ID:
- 64-72
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Most existing methods for automatic fact-checking start with a precompiled list of claims to verify. We investigate the understudied problem of determining what statements in news articles are worthy to fact-check. We annotate the argument structure of 95 news articles in the climate change domain that are fact-checked by climate scientists at climatefeedback.org. We release the first multi-layer annotated corpus for both argumentative discourse structure (argument types and relations) and for fact-checked statements in news articles. We discuss the connection between argument structure and check-worthy statements and develop several baseline models for detecting check-worthy statements in the climate change domain. Our preliminary results show that using information about argumentative discourse structure shows slight but statistically significant improvement over a baseline of local discourse structure.more » « less
- 
            We present an analytic study on the language of news media in the context of political fact-checking and fake news detection. We compare the language of real news with that of satire, hoaxes, and propaganda to find linguistic characteristics of untrustworthy text. To probe the feasibility of automatic political fact-checking, we also present a case study based on PolitiFact.com using their factuality judgments on a 6-point scale. Experiments show that while media fact-checking remains to be an open research question, stylistic cues can help determine the truthfulness of text.more » « less
- 
            This paper presents an algorithm audit of the Google Top Stories box, a prominent component of search engine results and powerful driver of traffic to news publishers. As such, it is important in shaping user attention towards news outlets and topics. By analyzing the number of appearances of news article links we contribute a series of novel analyses that provide an in-depth characterization of news source diversity and its implications for attention via Google search. We present results indicating a considerable degree of source concentration (with variation among search terms), a slight exaggeration in the ideological skew of news in comparison to a baseline, and a quantification of how the presentation of items translates into traffic and attention for publishers. We contribute insights that underscore the power that Google wields in exposing users to diverse news information, and raise important questions and opportunities for future work on algorithmic news curation.more » « less
- 
            Feldman, Anna; Da San Martino, Giovanni; Leberknight, Chris; Nakov, Preslav (Ed.)The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    