- Award ID(s):
- 1633831
- Publication Date:
- NSF-PAR ID:
- 10278909
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 25
- Issue:
- 4
- Page Range or eLocation-ID:
- 2239 to 2259
- ISSN:
- 1607-7938
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. The acceleration of urbanization requires sustainable, adaptive management strategies for land and water use in cities. Although the effects of buildings and sealed surfaces on urban runoff generation and local climate are well known, much less is known about the role of water partitioning in urban green spaces. In particular, little is quantitatively known about how different vegetation types of urban green spaces (lawns, parks, woodland, etc.) regulate partitioning of precipitation into evaporation, transpiration and groundwater recharge and how this partitioning is affected by sealed surfaces. Here, we integrated field observations with advanced, isotope-based ecohydrological modelling at a plot-scale site in Berlin, Germany. Soil moisture and sap flow, together with stable isotopes in precipitation, soil water and groundwater recharge, were measured over the course of one growing season under three generic types of urban green space: trees, shrub and grass. Additionally, an eddy flux tower at the site continuously collected hydroclimate data. These data have been used as input and for calibration of the process-based ecohydrological model EcH2O-iso. The model tracks stable isotope ratios and water ages in various stores (e.g. soils and groundwater) and fluxes (evaporation, transpiration and recharge). Green water fluxes in evapotranspiration increased in the ordermore »
-
Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect themore »
-
We introduce EcH2O-iso, a new development of the physically-based, fully-distributed ecohydrological model EcH2O where the tracking of water isotopic tracers (2H and 18O) and age has been incorporated. EcH2O-iso is evaluated at a montane, low-energy experimental catchment in eastern Scotland using 16 independent isotope time series from various landscape positions and compartments; encompassing soil water, groundwater, stream water, and plant xylem. We find a good model-observation match in most cases, despite having only calibrated the model using hydrometric data and energy fluxes. These results provide further validation of the physical basis of the model for successfully capturing catchment hydrological functioning, both in terms of the celerity in energy propagation (e.g. runoff generation under prevailing hydraulic gradients) and flow velocities of water molecules (e.g., in consistent tracer concentrations at given locations and times). We also show that the spatially-distributed formulation of EcH2O-iso provides a powerful tool for quantitatively linking water stores and fluxes with spatio-temporal patterns of isotopes ratios and water ages. Finally, our study highlights some model development and benchmarking needs, refined using isotope-based calibration, for hypothesis testing and improved simulations of catchment dynamics that is transferable beyond the catchment landscape studied here.
-
Abstract. Dryland regions are characterised by water scarcity and are facingmajor challenges under climate change. One difficulty is anticipating howrainfall will be partitioned into evaporative losses, groundwater, soilmoisture, and runoff (the water balance) in the future, which has importantimplications for water resources and dryland ecosystems. However, in orderto effectively estimate the water balance, hydrological models in drylandsneed to capture the key processes at the appropriate spatio-temporal scales.These include spatially restricted and temporally brief rainfall, highevaporation rates, transmission losses, and focused groundwater recharge.Lack of available input and evaluation data and the high computational costsof explicit representation of ephemeral surface–groundwater interactionsrestrict the usefulness of most hydrological models in these environments.Therefore, here we have developed a parsimonious distributed hydrologicalmodel for DRYland Partitioning (DRYP). The DRYP model incorporates the keyprocesses of water partitioning in dryland regions with limited datarequirements, and we tested it in the data-rich Walnut Gulch ExperimentalWatershed against measurements of streamflow, soil moisture, andevapotranspiration. Overall, DRYP showed skill in quantifying the maincomponents of the dryland water balance including monthly observations ofstreamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7),evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment andthat < 1 % leaves the catchment as streamflow. Greater thanmore »
-
Woody encroachment is a widespread phenomenon in grassland ecosystems, driven by overgrazing, fire suppression, nitrogen deposition and climate change, among other environmental changes. The influence of woody encroachment on processes such as chemical weathering however is poorly understood. In particular, for fast reactions such as carbonate weathering, root traits associated with woody encroachment (e.g., coarser, deeper, and longer residence times) can potentially change fluxes of inorganic carbon into streams and back to the atmosphere, providing CO2-climate feedbacks. Here we examine the influence of deepening roots arising from woody encroachment on catchment water balance and carbonate weathering rates at Konza a tallgrass prairie within a carbonate terrain where woody encroachment is suspected to drive the groundwater alkalinity upwards. We use a watershed reactive transport model BioRT-Flux-PIHM to understand the ramifications of deepening roots. Stream discharge and evapotranspiration (ET) measurements were used to calibrate the hydrology model. The subsurface CO2 concentration, water quality data for groundwater, stream, soil water and precipitation were used to constrain the soil respiration and carbonate dissolution reaction rates. The hydrology model has a Nash-Sutcliffe Efficiency value of 0.88. Modelling results from numerical experiments indicate that woody encroachment results in overall lower stream flow due to higher ET,more »