skip to main content


Title: Photoinduced Electron Transfer in an Ethyne Bridged DonorAcceptor Complex Depends Strongly on Torsion Angle
Photoinduced electron transfer (ET) between electron donor (dimethylaniline) and acceptor (N-isopropyl-1,8-napthalimide) covalently linked by ethyne bridge is investigated by a mid-IR transient absorption spectroscopy and TD-DFT computations. We found that electronic and vibrational properties of the complex, including ET rate, depends strongly on the D-A torsion angle.  more » « less
Award ID(s):
1955138
NSF-PAR ID:
10278912
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Time Resolved Vibrational Spectroscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris ( Rpa ETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of Rpa ETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT Rpa ETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests. 
    more » « less
  2. null (Ed.)
    We report an anomalous regime of laser-matter interactions, which is created by the wavelength dependence of electron collision time during filamentation in solids. Experiments are performed using femtosecond-time-resolved interferometry by varying the filament driver wavelength from 1.2 to 2.3 μm and using a 0.8-μm probe. Information on the phase and absorption via interferometry enables simultaneous measurements of plasma densities and electron collision times during filamentation. Although it is expected that the plasma density decreases with increasing wavelength due to larger plasma-defocusing at longer wavelengths [1-4], our measured plasma densities are nearly constant for all the pump wavelengths. This observation is successfully explained by the measured wavelength-dependence of electron collision time: electron collision times in filament-produced plasma decrease with increasing wavelength, which creates an anomalous regime of plasma-defocusing where longer wavelengths experience smaller plasma defocusing. In addition, simulations with the measured electron collision times successfully reproduce the observed plasma density scaling with wavelength [5]. [1] L. Bergé et al., Phys. Rev. A 88, 023816 (2013). [2] Y. E. Geints et al., Appl. Opt. 56, 1397 (2017). [3] S. Tochitsky et al., Nat. Photonics 13, 41 (2019). [4] R. I. Grynko et al., Phys. Rev. A 98, 023844 (2018). [5] Nagar et al., submitted. 
    more » « less
  3. null (Ed.)
    Abstract Background Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods. Cryo-electron tomogram simulation is an effective solution to test and optimize the performance of the above image processing methods. The simulated images could be regarded as the labeled data which covers a wide range of macromolecular complexes and ultrastructure. To approximate the crowded cellular environment, it is very important to pack these heterogeneous structures as tightly as possible. Besides, simulating non-deformable and deformable components under a unified framework also need to be achieved. Result In this paper, we proposed a unified framework for simulating crowded cryo-electron tomogram images including non-deformable macromolecular complexes and deformable ultrastructures. A macromolecule was approximated using multiple balls with fixed relative positions to reduce the vacuum volume. A ultrastructure, such as membrane and filament, was approximated using multiple balls with flexible relative positions so that this structure could deform under force field. In the experiment, 400 macromolecules of 20 representative types were packed into simulated cytoplasm by our framework, and numerical verification proved that our method has a smaller volume and higher compression ratio than the baseline single-ball model. We also packed filaments, membranes and macromolecules together, to obtain a simulated cryo-electron tomogram image with deformable structures. The simulated results are closer to the real Cryo-ET, making the analysis more difficult. The DOG particle picking method and the image segmentation method are tested on our simulation data, and the experimental results show that these methods still have much room for improvement. Conclusion The proposed multi-ball model can achieve more crowded packaging results and contains richer elements with different properties to obtain more realistic cryo-electron tomogram simulation. This enables users to simulate cryo-electron tomogram images with non-deformable macromolecular complexes and deformable ultrastructures under a unified framework. To illustrate the advantages of our framework in improving the compression ratio, we calculated the volume of simulated macromolecular under our multi-ball method and traditional single-ball method. We also performed the packing experiment of filaments and membranes to demonstrate the simulation ability of deformable structures. Our method can be used to do a benchmark by generating large labeled cryo-ET dataset and evaluating existing image processing methods. Since the content of the simulated cryo-ET is more complex and crowded compared with previous ones, it will pose a greater challenge to existing image processing methods. 
    more » « less
  4. Efficient photosynthetic energy conversion requires quantitative, light-driven formation of high-energy, charge-separated states. However, energies of high-lying excited states are rarely extracted, in part because the congested density of states in the excited-state manifold leads to rapid deactivation. Conventional photosystem designs promote electron transfer (ET) by polarizing excited donor electron density toward the acceptor (“one-way” ET), a form of positive design. Curiously, negative design strategies that explicitly avoid unwanted side reactions have been underexplored. We report here that electronic polarization of a molecular chromophore can be used as both a positive and negative design element in a light-driven reaction. Intriguingly, prudent engineering of polarized excited states can steer a “U-turn” ET—where the excited electron density of the donor is initially pushed away from the acceptor—to outcompete a conventional one-way ET scheme. We directly compare one-way vs. U-turn ET strategies via a linked donor–acceptor (DA) assembly in which selective optical excitation produces donor excited states polarized either toward or away from the acceptor. Ultrafast spectroscopy of DA pinpoints the importance of realizing donor singlet and triplet excited states that have opposite electronic polarizations to shut down intersystem crossing. These results demonstrate that oppositely polarized electronically excited states can be employed to steer photoexcited states toward useful, high-energy products by routing these excited states away from states that are photosynthetic dead ends. 
    more » « less
  5. Lopez, J. L. (Ed.)
    In this study, voltage distribution and surface dielectric barrier discharge (DBD) of a microplasma discharge device (MDD) were modeled in 2-D domain using finite-element analysis (FEA). Initially, the voltage distribution across comb-, H-tree-, and honeycomb-structured MDD was analyzed. Then, the cross section of an MDD consisting of a polyimide-based dielectric sandwiched between two copper electrodes was used for modeling the microplasma discharge characteristics in an argon environment. A sinusoidal voltage was applied to one of the copper electrodes while the other electrode was grounded. The spatial distributions of electron temperature (ET) across the electrodes for varying input voltages were simulated to demonstrate the importance of breakdown voltage. A detailed analysis on the effect of varying electrode and dielectric barrier thicknesses on electron density and ET was also performed to understand the importance of optimizing device configurations for microplasma discharge. Moreover, MDD was also simulated in varying ambient temperature and pressure conditions to evaluate their effect on ET and density across the electrodes. The results from these simulations provide a better understanding of parameters such as varying input voltage, electrode, and dielectric thickness on ET and electron density. This enables us to optimize design parameters for fabricating MDDs and the operating conditions for effective sterilization applications. 
    more » « less