- Award ID(s):
- 1814476
- NSF-PAR ID:
- 10278939
- Date Published:
- Journal Name:
- In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI '21)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We investigate the effects of perspective taking, privacy cues, and portrayal of photo subjects (i.e., photo valence) on decisions to share photos of people via social media. In an online experiment we queried 379 participants about 98 photos (that were previously rated for photo valence) in three conditions: (1) Baseline: participants judged their likelihood of sharing each photo; (2) Perspective-taking: participants judged their likelihood of sharing each photo when cued to imagine they are the person in the photo; and (3) Privacy: participants judged their likelihood to share after being cued to consider the privacy of the person in the photo. While participants across conditions indicated a lower likelihood of sharing photos that portrayed people negatively, they – surprisingly – reported a higher likelihood of sharing photos when primed to consider the privacy of the person in the photo. Frequent photo sharers on real-world social media platforms and people without strong personal privacy preferences were especially likely to want to share photos in the experiment, regardless of how the photo portrayed the subject. A follow-up study with 100 participants explaining their responses revealed that the Privacy condition led to a lack of concern with others’ privacy. These findings suggest that developing interventions for reducing photo sharing and protecting the privacy of others is a multivariate problem in which seemingly obvious solutions can sometimes go awry.more » « less
-
In recent years, Online Social Networks (OSN) have become popular content-sharing environments. With the emergence of smartphones with high-quality cameras, people like to share photos of their life moments on OSNs. The photos, however, often contain private information that people do not intend to share with others (e.g., their sensitive relationship). Solely relying on OSN users to manually process photos to protect their relationship can be tedious and error-prone. Therefore, we designed a system to automatically discover sensitive relations in a photo to be shared online and preserve the relations by face blocking techniques. We first used the Decision Tree model to learn sensitive relations from the photos labeled private or public by OSN users. Then we defined a face blocking problem and developed a linear programming model to optimize the tradeoff between preserving relationship privacy and maintaining the photo utility. In this paper, we generated synthetic data and used it to evaluate our system performance in terms of privacy protection and photo utility loss.more » « less
-
‘Interdependent’ privacy violations occur when users share private photos and information about other people in social media without permission. This research investigated user characteristics associated with interdependent privacy perceptions, by asking social media users to rate photo-based memes depicting strangers on the degree to which they were too private to share. Users also completed questionnaires measuring social media usage and personality. Separate groups rated the memes on shareability, valence, and entertainment value. Users were less likely to share memes that were rated as private, except when the meme was entertaining or when users exhibited dark triad characteristics. Users with dark triad characteristics demonstrated a heightened awareness of interdependent privacy and increased sharing of others’ photos. A model is introduced that highlights user types and characteristics that correspond to different privacy preferences: privacy preservers, ignorers, and violators. We discuss how interventions to support interdependent privacy must effectively influence diverse users.more » « less
-
null (Ed.)This study tested the effect of visual attention on decision-making in digital environments. Fifty-nine individuals were asked how likely they would be to share 40 memes (photos with superimposed captions) on social media while their eye movements were tracked. The likelihood of sharing memes increased as attention to the text of the meme increased; conversely, the likelihood of sharing decreased as attention to the image of the meme increased. In addition, increased trait levels of agreeableness predicted a greater likelihood of sharing memes. These results indicate that individual differences in personality and eye movements predict the likelihood of sharing photo-memes on social media platforms.more » « less
-
Photo sharing has become increasingly easy with the rise of social media. Social networking sites (SNSs), such as Instagram and Facebook, are well known for their image-sharing capabilities. However, this brings the concern of photo privacy, such as who may see the images of a user who is included in a post. Photo privacy settings offer detailed and more secure ways to share a user’s photos, however, this would require SNS users to understand these settings. To better grasp users’ understanding of photo privacy settings, we conducted a structured interview with Instagram users. We found that users were aware of the majority of the privacy settings asked about and that they accurately perceived their photo privacy safety based on their knowledge of photo privacy settings.