With the rising popularity of photo sharing in online social media, interpersonal privacy violations, where one person violates the privacy of another, have become an increasing concern. Although applying image obfuscations can be a useful tool for improving privacy when sharing photos, prior studies have found these obfuscation techniques adversely affect viewers' satisfaction. On the other hand, ephemeral photos, popularized by apps such as Snapchat, allow viewers to see the entire photo, which then disappears shortly thereafter to protect privacy. However, people often use workarounds to save these photos before deletion. In this work, we study people's sharing preferences with two proposed 'temporal redactions', which combines ephemerality with redactions to allow viewers to see the entire image, yet make these images safe for longer storage through a gradual or delayed application of redaction on the sensitive portions of the photo. We conducted an online experiment (N=385) to study people's sharing behaviors in different contexts and under different levels of assurance provided by the viewer's platform (e.g., guaranteeing temporal redactions are applied through the use of 'trusted hardware'). Our findings suggest that the proposed temporal redaction mechanisms are often preferred over existing methods. On the other hand, more efforts are needed to convey the benefits of trusted hardware to users, as no significant differences were observed in attitudes towards 'trusted hardware' on viewers' devices.
more »
« less
Encrypted cloud photo storage using Google photos
Cloud photo services are widely used for persistent, convenient, and often free photo storage, which is especially useful for mobile devices. As users store more and more photos in the cloud, significant privacy concerns arise because even a single compromise of a user's credentials give attackers unfettered access to all of the user's photos. We have created Easy Secure Photos (ESP) to enable users to protect their photos on cloud photo services such as Google Photos. ESP introduces a new client-side encryption architecture that includes a novel format-preserving image encryption algorithm, an encrypted thumbnail display mechanism, and a usable key management system. ESP encrypts image data such that the result is still a standard format image like JPEG that is compatible with cloud photo services. ESP efficiently generates and displays encrypted thumbnails for fast and easy browsing of photo galleries from trusted user devices. ESP's key management makes it simple to authorize multiple user devices to view encrypted image content via a process similar to device pairing, but using the cloud photo service as a QR code communication channel. We have implemented ESP in a popular Android photos app for use with Google Photos and demonstrate that it is easy to use and provides encryption functionality transparently to users, maintains good interactive performance and image quality while providing strong privacy guarantees, and retains the sharing and storage benefits of Google Photos without any changes to the cloud service.
more »
« less
- Award ID(s):
- 1717801
- PAR ID:
- 10298162
- Date Published:
- Journal Name:
- MobiSys 2021
- Page Range / eLocation ID:
- 136 to 149
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In this paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS.more » « less
-
Cloud computing has been a prominent technology that allows users to store their data and outsource intensive computations. However, users of cloud services are also concerned about protecting the confidentiality of their data against attacks that can leak sensitive information. Although traditional cryptography can be used to protect static data or data being transmitted over a network, it does not support processing of encrypted data. Homomorphic encryption can be used to allow processing directly on encrypted data, but a dishonest cloud provider can alter the computations performed, thus violating the integrity of the results. To overcome these issues, we propose PEEV (Parse, Encrypt, Execute, Verify), a framework that allows a developer with no background in cryptography to write programs operating on encrypted data, outsource computations to a remote server, and verify the correctness of the computations. The proposed framework relies on homomorphic encryption techniques as well as zero-knowledge proofs to achieve verifiable privacy-preserving computation. It supports practical deployments with low performance overheads and allows developers to express their encrypted programs in a high-level language, abstracting away the complexities of encryption and verification.more » « less
-
Abstract We present the design, implementation and evaluation of a system, called MATRIX, developed to protect the privacy of mobile device users from location inference and sensor side-channel attacks. MATRIX gives users control and visibility over location and sensor (e.g., Accelerometers and Gyroscopes) accesses by mobile apps. It implements a PrivoScope service that audits all location and sensor accesses by apps on the device and generates real-time notifications and graphs for visualizing these accesses; and a Synthetic Location service to enable users to provide obfuscated or synthetic location trajectories or sensor traces to apps they find useful, but do not trust with their private information. The services are designed to be extensible and easy for users, hiding all of the underlying complexity from them. MATRIX also implements a Location Provider component that generates realistic privacy-preserving synthetic identities and trajectories for users by incorporating traffic information using historical data from Google Maps Directions API, and accelerations using statistical information from user driving experiments. These mobility patterns are generated by modeling/solving user schedule using a randomized linear program and modeling/solving for user driving behavior using a quadratic program. We extensively evaluated MATRIX using user studies, popular location-driven apps and machine learning techniques, and demonstrate that it is portable to most Android devices globally, is reliable, has low-overhead, and generates synthetic trajectories that are difficult to differentiate from real mobility trajectories by an adversary.more » « less
-
In the past decade, we have witnessed an exponential growth of deep learning models, platforms, and applications. While existing DL applications and Machine Learning as a service (MLaaS) frameworks assume fully trusted models, the need for privacy-preserving DNN evaluation arises. In a secure multi-party computation scenario, both the model and the data are considered proprietary, i.e., the model owner does not want to reveal the highly valuable DL model to the user, while the user does not wish to disclose their private data samples either. Conventional privacy-preserving deep learning solutions ask the users to send encrypted samples to the model owners, who must handle the heavy lifting of ciphertext-domain computation with homomorphic encryption. In this paper, we present a novel solution, namely, PrivDNN, which (1) offloads the computation to the user side by sharing an encrypted deep learning model with them, (2) significantly improves the efficiency of DNN evaluation using partial DNN encryption, (3) ensures model accuracy and model privacy using a core neuron selection and encryption scheme. Experimental results show that PrivDNN reduces privacy-preserving DNN inference time and memory requirement by up to 97% while maintaining model performance and privacy. Codes can be found at https://github.com/LiangqinRen/PrivDNNmore » « less
An official website of the United States government

