Abstract During infectious disease outbreaks, individuals may adopt protective measures like vaccination and physical distancing in response to awareness of disease burden. Prior work showed how feedbacks between epidemic intensity and awareness-based behaviour shape disease dynamics. These models often overlook social divisions, where population subgroups may be disproportionately impacted by a disease and more responsive to the effects of disease within their group. We develop a compartmental model of disease transmission and awareness-based protective behaviour in a population split into two groups to explore the impacts of awareness separation (relatively greater in- vs. out-group awareness of epidemic severity) and mixing separation (relatively greater in- vs. out-group contact rates). Using simulations, we show that groups that are more separated in awareness have smaller differences in mortality. Fatigue (i.e. abandonment of protective measures over time) can drive additional infection waves that can even exceed the size of the initial wave, particularly if uniform awareness drives early protection in one group, leaving that group largely susceptible to future infection. Counterintuitively, vaccine or infection-acquired immunity that is more protective against transmission and mortality may indirectly lead to more infections by reducing perceived risk of infection and therefore vaccine uptake. Awareness-based protective behaviour, including awareness separation, can fundamentally alter disease dynamics. Social media summary: Depending on group division, behaviour based on perceived risk can change epidemic dynamics & produce large later waves.
more »
« less
Coupled dynamics of behaviour and disease contagion among antagonistic groups
Abstract Disease transmission and behaviour change are both fundamentally social phenomena. Behaviour change can have profound consequences for disease transmission, and epidemic conditions can favour the more rapid adoption of behavioural innovations. We analyse a simple model of coupled behaviour change and infection in a structured population characterised by homophily and outgroup aversion. Outgroup aversion slows the rate of adoption and can lead to lower rates of adoption in the later-adopting group or even behavioural divergence between groups when outgroup aversion exceeds positive ingroup influence. When disease dynamics are coupled to the behaviour-adoption model, a wide variety of outcomes are possible. Homophily can either increase or decrease the final size of the epidemic depending on its relative strength in the two groups and on R 0 for the infection. For example, if the first group is homophilous and the second is not, the second group will have a larger epidemic. Homophily and outgroup aversion can also produce dynamics suggestive of a ‘second wave’ in the first group that follows the peak of the epidemic in the second group. Our simple model reveals dynamics that are suggestive of the processes currently observed under pandemic conditions in culturally and/or politically polarised populations such as the USA.
more »
« less
- Award ID(s):
- 2028160
- PAR ID:
- 10278950
- Date Published:
- Journal Name:
- Evolutionary Human Sciences
- Volume:
- 3
- ISSN:
- 2513-843X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite the global impact of the coronavirus disease 2019 pandemic, the question of whether mandated interventions have similar economic and public health effects as spontaneous behavioural change remains unresolved. Addressing this question, and understanding differential effects across socioeconomic groups, requires building quantitative and fine-grained mechanistic models. Here we introduce a data-driven, granular, agent-based model that simulates epidemic and economic outcomes across industries, occupations and income levels. We validate the model by reproducing key outcomes of the first wave of coronavirus disease 2019 in the New York metropolitan area. The key mechanism coupling the epidemic and economic modules is the reduction in consumption due to fear of infection. In counterfactual experiments, we show that a similar trade-off between epidemic and economic outcomes exists both when individuals change their behaviour due to fear of infection and when non-pharmaceutical interventions are imposed. Low-income workers, who perform in-person occupations in customer-facing industries, face the strongest trade-off.more » « less
-
The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue.more » « less
-
Risk-driven behaviour provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regard to risk tolerance. The interplay between behaviour and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioural composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behaviour, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the fraction of risk-averse people in the population and the duration of intervention usage reduce the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold and overshoot is eliminated. Finally, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse.more » « less
-
Social change in any society entails changes in both behaviours and institutions. We model a group-structured society in which the transmission of individual behaviour occurs in parallel with the selection of group-level institutions. We consider a cooperative behaviour that generates collective benefits for groups but does not spread between individuals on its own. Groups exhibit institutions that increase the diffusion of the behaviour within the group, but also incur a group cost. Groups adopt institutions in proportion to their fitness. Finally, the behaviour may also spread globally. We find that behaviour and institutions can be mutually reinforcing. But the model also generates behavioural source-sink dynamics when behaviour generated in institutionalized groups spreads to non-institutionalized groups and boosts their fitness. Consequently, the global diffusion of group-beneficial behaviour creates a pattern of institutional free-riding that limits the evolution of group-beneficial institutions. Our model suggests that, in a group-structured society, large-scale beneficial social change can be best achieved when the relevant behaviour and institutions remain correlated.more » « less
An official website of the United States government

