skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physiologists turned Geneticists: Identifying transcripts and genes for neuronal function in the Marbled Crayfish, Procambarus virginalis
The number of undergraduate researchers interested in pursuing neurophysiological research exceeds the research laboratory positions and hands-on course experiences available because these types of experiments often require extensive experience or expensive equipment. In contrast, genetic and molecular tools can more easily incorporate undergraduates with less time or training. With the explosion of newly sequenced genomes and transcriptomes, there is a large pool of untapped molecular and genetic information which would greatly inform neurophysiological processes. Classically trained neurophysiologists often struggle to make use of newly available genetic information for themselves and their trainees, despite the clear advantage of combining genetic and physiological techniques. This is particularly prevalent among researchers working with organisms that historically had no or only few genetic tools available. Combining these two fields will expose undergraduates to a greater variety of research approaches, concepts, and hands-on experiences. The goal of this manuscript is to provide an easily understandable and reproducible workflow that can be applied in both lab and classroom settings to identify genes involved in neuronal function. We outline clear learning objectives that can be acquired by following our workflow and assessed by peer-evaluation. Using our workflow, we identify and validate the sequence of two new Gamma Aminobutyric Acid A (GABAA) receptor subunit homologs in the recently published genome and transcriptome of the marbled crayfish, Procambarus virginalis. Altogether, this allows undergraduate students to apply their knowledge of the processes of gene expression to functional neuronal outcomes. It also provides them with opportunities to contribute significantly to physiological research, thereby exposing them to interdisciplinary approaches.  more » « less
Award ID(s):
1755098
PAR ID:
10278978
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of undergraduate neuroscience education
Volume:
19
Issue:
1
ISSN:
1544-2896
Page Range / eLocation ID:
A36-A51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lele, Pushkar P (Ed.)
    The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacteriumAgrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function. 
    more » « less
  2. Molecular spectroscopy and photochemistry constitute an integral field in modern chemistry. However, undergraduate level classes provide limited opportunities for hands-on experimentation of photochemistry and photophysics. For this reason, a simple laboratory experiment was designed that may be easily implemented into undergraduate teaching laboratories with the aim of introducing undergraduate students to UV/visible spectroscopy and photochemistry/photophysics and its possible applications. Samples of three unknown sunscreen formulations are given to students and they are asked to use a set of techniques to identify their molecular composition and to test their efficacy using basic laboratory equipment available to them. In particular, the students are asked to complete the following tasks: (i) sample preparation using solvent extraction to extract active ingredients from the sunscreen lotion, (ii) identify the extracted molecular sunscreen constituents by Thin Layer Chromatography (TLC) and UV/visible spectroscopy, and finally (iii) study their photostability by means of steady state irradiation coupled with UV/visible spectroscopy. The students were provided with the following tools for data collection: silica-backed TLC plates, a short-wave lamp (254 nm, for TLC analysis), a UV-Vis spectrophotometer with an associated computer and software, and an LED lamp (315 nm) to irradiate the samples. Combined TLC and UV-Vis spectroscopy allowed the students to identify the extracted ingredients. UV irradiation confirmed the photostability of sunscreens. 
    more » « less
  3. Molecular spectroscopy and photochemistry constitute an integral field in modern chemistry. However, undergraduate level classes provide limited opportunities for hands-on experimentation of photochemistry and photophysics. For this reason, a simple laboratory experiment was designed that may be easily implemented into undergraduate teaching laboratories with the aim of introducing undergraduate students to UV/visible spectroscopy and photochemistry/photophysics and its possible applications. Samples of three unknown sunscreen formulations are given to students and they are asked to use a set of techniques to identify their molecular composition and to test their efficacy using basic laboratory equipment available to them. In particular, the students are asked to complete the following tasks: (i) sample preparation using solvent extraction to extract active ingredients from the sunscreen lotion, (ii) identify the extracted molecular sunscreen constituents by Thin Layer Chromatography (TLC) and UV/visible spectroscopy, and finally (iii) study their photostability by means of steady state irradiation coupled with UV/visible spectroscopy. The students were provided with the following tools for data collection: silica-backed TLC plates, a short-wave lamp (254 nm, for TLC analysis), a UV-Vis spectrophotometer with an associated computer and software, and an LED lamp (315 nm) to irradiate the samples. Combined TLC and UV-Vis spectroscopy allowed the students to identify the extracted ingredients. UV irradiation confirmed the photostability of sunscreens. 
    more » « less
  4. Abstract This study leverages reactive molecular dynamics simulations to enhance undergraduate education and research in materials science. Focusing on the oxidation processes of a variety of energetic metal nanoparticles, including Al, Cu, Mg, and Ti, two undergraduate students led the scientific inquiry. They conducted literature reviews, ran simulations, validated assumptions, and analyzed results, deepening their understanding of material behaviors and strengthening their STEM identity. Through these hands-on experiences, the students successfully investigated the energetic properties of these nanoparticles, demonstrating the effectiveness of this approach in promoting inquiry-based learning. This work underscores the transformative potential of computational simulations in advancing computational materials research, fostering diversity, and preparing undergraduates for future contributions to computational modeling-driven science. Graphical abstract 
    more » « less
  5. The pandemic has had innumerable impacts on the oceanographic community, including on summer research internship programs that expose undergraduates to diverse career paths in oceanography while immersed in an active laboratory. For many students, these internships are formative in their career choices. The Summer Undergraduate Research Fellowship in Oceanography (SURFO) at the University of Rhode Island’s Graduate School of Oceanography is one of the Research Experiences for Undergraduates (REU) programs that proceeded remotely during the summer of 2020. Here, we highlight one project that, although remote, maintained a hands-on research experience focused on quantitative skill building. The pandemic forced the REU advisors to identify key learning goals and ensure their safe delivery, given the circumstances. Although all participants agreed that in-person instruction would have been preferable, we were pleased that we did not let a virus halt essential oceanographic research training. 
    more » « less