skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Attentive Normalization
In state-of-the-art deep neural networks, both feature normalization and feature attention have become ubiquitous. They are usually studied as separate modules, however. In this paper, we propose a light-weight integration between the two schema and present Attentive Normalization (AN). Instead of learning a single affine transformation, AN learns a mixture of affine transformations and utilizes their weighted-sum as the final affine transformation applied to re-calibrate features in an instance-specific way. The weights are learned by leveraging channel-wise feature attention. In experiments, we test the proposed AN using four representative neural architectures. In the ImageNet-1000 classification benchmark and the MS-COCO 2017 object detection and instance segmentation benchmark. AN obtains consistent performance improvement for different neural architectures in both benchmarks with absolute increase of top-1 accuracy in ImageNet-1000 between 0.5\% and 2.7\%, and absolute increase up to 1.8\% and 2.2\% for bounding box and mask AP in MS-COCO respectively. We observe that the proposed AN provides a strong alternative to the widely used Squeeze-and-Excitation (SE) module. The source codes are publicly available at \href{}{the ImageNet Classification Repo} and \href{\_Detection}{the MS-COCO Detection and Segmentation Repo}.  more » « less
Award ID(s):
1909644 1822477 2013451
Author(s) / Creator(s):
; ;
Vedaldi, A.
Date Published:
Journal Name:
16th European Conference on Computer Vision (2020)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vision Transformers (ViTs) are built on the assumption of treating image patches as “visual tokens” and learn patch-to-patch attention. The patch embedding based tokenizer has a semantic gap with respect to its counterpart, the textual tokenizer. The patch-to-patch attention suffers from the quadratic complexity issue, and also makes it non-trivial to explain learned ViTs. To address these issues in ViT, this paper proposes to learn Patch-to-Cluster attention (PaCa) in ViT. Queries in our PaCa-ViT starts with patches, while keys and values are directly based on clustering (with a predefined small number of clusters). The clusters are learned end-to-end, leading to better tokenizers and inducing joint clustering-for-attention and attention-for-clustering for better and interpretable models. The quadratic complexity is relaxed to linear complexity. The proposed PaCa module is used in designing efficient and interpretable ViT backbones and semantic segmentation head networks. In experiments, the proposed methods are tested on ImageNet-1k image classification, MS-COCO object detection and instance segmentation and MIT-ADE20k semantic segmentation. Compared with the prior art, it obtains better performance in all the three benchmarks than the SWin [32] and the PVTs [47], [48] by significant margins in ImageNet-1k and MIT-ADE20k. It is also significantly more efficient than PVT models in MS-COCO and MIT-ADE20k due to the linear complexity. The learned clusters are semantically meaningful. Code and model checkpoints are available at https:/ 
    more » « less
  2. null (Ed.)
    Aliasing refers to the phenomenon that high frequency signals degenerate into com- pletely different ones after sampling. It arises as a problem in the context of deep learning as downsampling layers are widely adopted in deep architectures to reduce parameters and computation. The standard solution is to apply a low-pass filter (e.g., Gaussian blur) before downsampling [37]. However, it can be suboptimal to apply the same filter across the entire content, as the frequency of feature maps can vary across both spatial locations and feature channels. To tackle this, we propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and chan- nel group of the input feature maps. We investigate the effectiveness and generalization of the proposed method across multiple tasks including ImageNet classification, COCO instance segmentation, and Cityscapes semantic segmentation. Qualitative and quanti- tative results demonstrate that our approach effectively adapts to the different feature frequencies to avoid aliasing while preserving useful information for recognition. Code is available at 
    more » « less
  3. null (Ed.)

    We present a new method to improve the representational power of the features in Convolutional Neural Networks (CNNs). By studying traditional image processing methods and recent CNN architectures, we propose to use positional information in CNNs for effective exploration of feature dependencies. Rather than considering feature semantics alone, we incorporate spatial positions as an augmentation for feature semantics in our design. From this vantage, we present a Position-Aware Recalibration Module (PRM in short) which recalibrates features leveraging both feature semantics and position. Furthermore, inspired by multi-head attention, our module is capable of performing multiple recalibrations where results are concatenated as the output. As PRM is efficient and easy to implement, it can be seamlessly integrated into various base networks and applied to many position-aware visual tasks. Compared to original CNNs, our PRM introduces a negligible number of parameters and FLOPs, while yielding better performance. Experimental results on ImageNet and MS COCO benchmarks show that our approach surpasses related methods by a clear margin with less computational overhead. For example, we improve the ResNet50 by absolute 1.75% (77.65% vs. 75.90%) on ImageNet 2012 validation dataset, and 1.5%~1.9% mAP on MS COCO validation dataset with almost no computational overhead. Codes are made publicly available.

    more » « less
  4. Ruiz, Francisco ; Dy, Jennifer ; van de Meent, Jan-Willem (Ed.)
    We propose CLIP-Lite, an information efficient method for visual representation learning by feature alignment with textual annotations. Compared to the previously proposed CLIP model, CLIP-Lite requires only one negative image-text sample pair for every positive image-text sample during the optimization of its contrastive learning objective. We accomplish this by taking advantage of an information efficient lower-bound to maximize the mutual information between the two input modalities. This allows CLIP-Lite to be trained with significantly reduced amounts of data and batch sizes while obtaining better performance than CLIP at the same scale. We evaluate CLIP-Lite by pretraining on the COCO-Captions dataset and testing transfer learning to other datasets. CLIP-Lite obtains a +14.0 mAP absolute gain in performance on Pascal VOC classification, and a +22.1 top-1 accuracy gain on ImageNet, while being comparable or superior to other, more complex, text-supervised models. CLIP-Lite is also superior to CLIP on image and text retrieval, zero-shot classification, and visual grounding. Finally, we show that CLIP-Lite can leverage language semantics to encourage bias-free visual representations that can be used in downstream tasks. Implementation: 
    more » « less
  5. We propose the width-resolution mutual learning method (MutualNet) to train a network that is executable at dynamic resource constraints to achieve adaptive accuracy-efficiency trade-offs at runtime. Our method trains a cohort of sub-networks with different widths (i.e., number of channels in a layer) using different input resolutions to mutually learn multi-scale representations for each sub-network. It achieves consistently better ImageNet top-1 accuracy over the state-of-the-art adaptive network US-Net under different computation constraints, and outperforms the best compound scaled MobileNet in EfficientNet by 1.5%. The superiority of our method is also validated on COCO object detection and instance segmentation as well as transfer learning. Surprisingly, the training strategy of MutualNet can also boost the performance of a single network, which substantially outperforms the powerful AutoAugmentation in both efficiency (GPU search hours: 15000 vs. 0) and accuracy (ImageNet: 77.6% vs. 78.6%). Code is available at aoyang1122/MutualNet 
    more » « less