skip to main content


Title: Fragmentation theory reveals processes controlling iceberg size distributions
Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing.  more » « less
Award ID(s):
1933105
NSF-PAR ID:
10279329
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Glaciology
Volume:
67
Issue:
264
ISSN:
0022-1430
Page Range / eLocation ID:
603 to 612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large tabular icebergs account for the majority of ice mass calved from Antarctic ice shelves, but are omitted from climate models. Specifically, these models do not account for iceberg breakup and as a result, modeled large icebergs could drift to low latitudes. Here, we develop a physically based parameterization of iceberg breakup based on the “footloose mechanism” suitable for climate models. This mechanism describes breakup of ice pieces from the iceberg edges triggered by buoyancy forces associated with a submerged ice foot fringing the iceberg. This foot develops as a result of ocean‐induced melt and erosion of the iceberg freeboard explicitly parameterized in the model. We then use an elastic beam model to determine when the foot is large enough to trigger calving, as well as the size of each child iceberg, which is controlled with the ice stiffness parameter. We test the breakup parameterization with a realistic large iceberg calving‐size distribution in the Geophysical Fluid Dynamics Laboratory OM4 ocean/sea‐ice model and obtain simulated iceberg trajectories and areas that closely match observations. Thus, the footloose mechanism appears to play a major role in iceberg decay that was previously unaccounted for in iceberg models. We also find that varying the size of the broken ice bits can influence the iceberg meltwater distribution more than physically realistic variations to the footloose decay rate.

     
    more » « less
  2. The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions. ▪ Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving. ▪ Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions. ▪ Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability. ▪ The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice. 
    more » « less
  3. Uncertainty about sea-level rise is dominated by uncertainty about iceberg calving, mass loss from glaciers or ice sheets by fracturing. Review of the rapidly growing calving literature leads to a few overarching hypotheses. Almost all calving occurs near or just downglacier of a location where ice flows into an environment more favorable for calving, so the calving rate is controlled primarily by flow to the ice margin rather than by fracturing. Calving can be classified into five regimes, which tend to be persistent, predictable, and insensitive to small perturbations in flow velocity, ice characteristics, or environmental forcing; these regimes can be studied instrumentally. Sufficiently large perturbations may cause sometimes-rapid transitions between regimes or between calving and noncalving behavior, during which fracturing may control the rate of calving. Regime transitions underlie the largest uncertainties in sea-level rise projections, but with few, important exceptions, have not been observed instrumentally. This is especially true of the most important regime transitions for sea-level rise. Process-based models informed by studies of ongoing calving, and assimilation of deep-time paleoclimatic data, may help reduce uncertainties about regime transitions. Failure to include calving accurately in predictive models could lead to large underestimates of warming-induced sea-level rise. ▪ Iceberg calving, the breakage of ice from glaciers and ice sheets, affects sea level and many other environmental issues. ▪ Modern rates of iceberg calving usually are controlled by the rate of ice flow past restraining points, not by the brittle calving processes. ▪ Calving can be classified into five regimes, which are persistent, predictable, and insensitive to small perturbations. ▪ Transitions between calving regimes are especially important and with warming might cause faster sea-level rise than generally projected. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  4. The calving of icebergs accounts for a significant fraction of the mass loss from both the Antarctic and Greenland ice sheets. Iceberg melting affects the water properties impacting sea ice formation, local circulation and biological activity. Laboratory experiments have investigated the effects of the Earth’s rotation on iceberg melting and the possible formation of Taylor columns (TCs) underneath icebergs. It is found that at high Rossby number, $Ro$ , when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation. As $Ro$ decreases, the melt rate shows an increasing trend, which is expected to reverse for very low $Ro$ . This behaviour is explained by considering the integrated horizontal velocity at the base of the iceberg. For moderate $Ro$ , a partial TC is formed and its effective blocking accelerates the flow under the remainder of the iceberg, which increases the melt rate since the melting is proportional to the flow velocity. It is expected that for very low $Ro$ the melt rate decreases because, with the expansion of the TC, the region of flow acceleration occurs away from the base of the iceberg. For low free stream velocity the freshwater produced by the ice melting introduces another dynamical effect. It is observed that there is a threshold free stream velocity below which the melt rate is constant. This is explained with the formation of a gravity current at the base of the iceberg that insulates it from the free flow and controls its melting. 
    more » « less
  5. Physical understanding, modeling, and available data indicate that sufficient warming and retreat of Thwaites Glacier, West Antarctica will remove its ice shelf and generate a calving cliff taller than any extant calving fronts, and that beyond some threshold this will generate faster retreat than any now observed. Persistent ice shelves are restricted to cold environments. Ice-shelf removal has been observed in response to atmospheric warming, with an important role for meltwater wedging open crevasses, and in response to oceanic warming, by mechanisms that are not fully characterized. Some marine-terminating glaciers lacking ice shelves “calve” from cliffs that are grounded at sea level or in relatively shallow water, but more-vigorous flows advance until the ice is close to flotation before calving. For these vigorous flows, a calving event shifts the ice front to a position that is slightly too thick to float, and generates a stress imbalance that causes the ice front to flow faster and thin to flotation, followed by another calving event; the rate of retreat thus is controlled by ice flow even though the retreat is achieved by fracture. Taller cliffs generate higher stresses, however, favoring fracture over flow. Deformational processes are often written as power-law functions of stress, with ice deformation increasing as approximately the third power of stress, but subcritical crack growth as roughly the thirtieth power, accelerating to elastic-wave speeds with full failure. Physical understanding, models based on this understanding, and the limited available data agree that, above some threshold height, brittle processes will become rate-limiting, generating faster calving at a rate that is not well known but could be very fast. Subaerial slumping followed by basal-crevasse growth of the unloaded ice is the most-likely path to this rapid calving. This threshold height is probably not too much greater than the tallest modern cliffs, which are roughly 100 m. 
    more » « less