skip to main content


Title: Time-domain Fabry–Perot resonators formed inside a dispersive medium

We show that the temporal analog of a Fabry–Perot resonator (FPR) can be realized by using two moving temporal boundaries, formed by intense pump pulses inside a dispersive medium (such as an optical fiber). We analyze such FPRs using a transfer-matrix method, similar to that used for spatial structures containing multiple thin films. We consider a temporal slab formed using a single square-shape pump pulse and find that the resonance of such an FPR has transmission peaks whose quality (Q) factors decrease rapidly with an increasing velocity difference between the pump and probe pulses. We propose an improved design by using two pump pulses. We apply our transfer-matrix method to this design and show considerable improvement in theQfactors of various peaks. We also show that such FPRs can be realized in practice by using two short pump pulses that propagate as solitons inside a fiber. We verified the results of the transfer-matrix method by directly solving the pulse propagation equation with the split-step Fourier method.

 
more » « less
Award ID(s):
1933328
NSF-PAR ID:
10279443
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
38
Issue:
8
ISSN:
0740-3224; JOBPDE
Page Range / eLocation ID:
Article No. 2376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study temporal reflection of an optical pulse from the refractive-index barrier created by a short pump soliton inside a nonlinear dispersive medium such as an optical fiber. One feature is that the soliton’s speed changes continuously as its spectrum redshifts because of intrapulse Raman scattering. We use the generalized nonlinear Schrödinger equation to find the shape and spectrum of the reflected pulse. Both are affected considerably by the soliton’s trajectory. The reflected pulse can become considerably narrower compared to the incident pulse under conditions that involve a type of temporal focusing. This phenomenon is explained through space–time duality by showing that the temporal situation is analogous to an optical beam incident obliquely on a parabolic mirror. We obtain an approximate analytic expression for the reflected pulse’s spectrum and use it to derive the temporal version of the transformation law for theqparameter associated with a Gaussian beam.

     
    more » « less
  2. High-gain optical parametric amplification is an important nonlinear process used both as a source of coherent infrared light and as a source of nonclassical light. In this work, we experimentally demonstrate an approach to optical parametric amplification that enables extremely large parametric gains with low energy requirements. In conventional nonlinear media driven by femtosecond pulses, multiple dispersion orders limit the effective interaction length available for parametric amplification. Here, we use the dispersion engineering available in periodically poled thin-film lithium niobate nanowaveguides to eliminate several dispersion orders at once. The result is a quasi-static process; the large peak intensity associated with a short pump pulse can provide gain to signal photons without undergoing pulse distortion or temporal walk-off. We characterize the parametric gain available in these waveguides using optical parametric generation, where vacuum fluctuations are amplified to macroscopic intensities. In the unsaturated regime, we observe parametric gains as large as 71 dB (118 dB/cm) spanning 1700–2700 nm with pump energies of only 4 pJ. When driven with pulse energies><#comment/>10pJ, we observe saturated parametric gains as large as 88 dB (><#comment/>146dB/cm). The devices shown here achieve saturated optical parametric generation with orders of magnitude less pulse energy than previous techniques.

     
    more » « less
  3. The conversion of a photon’s frequency has long been a key application area of nonlinear optics. It has been discussed how a slow temporal variation of a material’s refractive index can lead to the adiabatic frequency shift (AFS) of a pulse spectrum. Such a rigid spectral change has relevant technological implications, for example, in ultrafast signal processing. Here, we investigate the AFS process in epsilon-near-zero (ENZ) materials and show that the frequency shift can be achieved in a shorter length if operating in the vicinity ofRe{ε<#comment/>r}=0. We also predict that, if the refractive index is induced by an intense optical pulse, the frequency shift is more efficient for a pump at the ENZ wavelength. Remarkably, we show that these effects are a consequence of the slow propagation speed of pulses at the ENZ wavelength. Our theoretical predictions are validated by experiments obtained for the AFS of optical pulses incident upon aluminum zinc oxide thin films at ENZ. Our results indicate that transparent metal oxides operating near the ENZ point are good candidates for future frequency conversion schemes.

     
    more » « less
  4. Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is limited by the acoustic speed in biological tissues to a few megahertz. Moreover, to achieve high-speed PAM of the oxygen saturation of hemoglobin, the stimulated Raman scattering effect in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is typically short, corresponding to a small time delay that leads to a significant overlap of the A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval but limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial network-based approach that enables temporal unmixing of photoacoustic A-line signals with an interval as short as∼<#comment/>38ns, breaking the physical limit on the A-line rate. Moreover, this deep learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing the insufficient energy of monochromatic laser pulses. This technique lays the foundation for ultrahigh-speed multi-parametric PAM.

     
    more » « less
  5. We experimentally demonstrate the utilization of adaptive optics (AO) to mitigate intra-group power coupling among linearly polarized (LP) modes in a graded-index few-mode fiber (GI FMF). Generally, in this fiber, the coupling between degenerate modes inside a modal group tends to be stronger than between modes belonging to different groups. In our approach, the coupling inside theLP11group can be represented by a combination of orbital-angular-momentum (OAM) modes, such that reducing power coupling in OAM set tends to indicate the capability to reduce the coupling inside theLP11group. We employ two output OAM modesl=+1andl=−<#comment/>1as resultant linear combinations of degenerateLP11aandLP11bmodes inside theLP11group of a∼<#comment/>0.6-kmGI FMF. The power coupling is mitigated by shaping the amplitude and phase of the distorted OAM modes. Each OAM mode carries an independent 20-, 40-, or 100-Gbit/s quadrature-phase-shift-keying data stream. We measure the transmission matrix (TM) in the OAM basis withinLP11group, which is a subset of the full LP TM of the FMF-based system. An inverse TM is subsequently implemented before the receiver by a spatial light modulator to mitigate the intra-modal-group power coupling. With AO mitigation, the experimental results forl=+1andl=−<#comment/>1modes show, respectively, that (i) intra-modal-group crosstalk is reduced by><#comment/>5.8dBand><#comment/>5.6dBand (ii) near-error-free bit-error-rate performance is achieved with a penalty of∼<#comment/>0.6dBand∼<#comment/>3.8dB, respectively.

     
    more » « less