skip to main content


Title: Absence of ice-bonded permafrost beneath an Arctic lagoon revealed by electrical geophysics
Relict permafrost is ubiquitous throughout the Arctic coastal shelf, but little is known about it near shore. The presence and thawing of subsea permafrost are vital information because permafrost stores an atmosphere’s worth of carbon and protects against coastal erosion. Through electrical resistivity imaging across a lagoon on the Alaska Beaufort Sea coast in summer, we found that the subsurface is not ice-bonded down to ~20 m continually from within the lagoon, across the beach, and underneath an ice-wedge polygon on the tundra. This contrasts with the broadly held idea of a gently sloping ice-bonded permafrost table extending from land to offshore. The extensive unfrozen zone is a marine talik connected to on-land cryopeg. This zone is a potential source and conduit for water and dissolved organic matter, is vulnerable to physical degradation, and is liable to changes in biogeochemical processes that affect carbon cycling and climate feedbacks.  more » « less
Award ID(s):
1656026
NSF-PAR ID:
10279484
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
43
ISSN:
2375-2548
Page Range / eLocation ID:
eabb5083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The western Arctic Ocean, including its shelves and coastal habitats, has become a focus in ocean acidification research over the past decade as thecolder waters of the region and the reduction of sea ice appear to promote the uptake of excess atmospheric CO2. Due to seasonal sea icecoverage, high-frequency monitoring of pH or other carbonate chemistry parameters is typically limited to infrequent ship-based transects duringice-free summers. This approach has failed to capture year-round nearshore carbonate chemistry dynamics which is modulated by biological metabolismin response to abundant allochthonous organic matter to the narrow shelf of the Beaufort Sea and adjacent regions. The coastline of the Beaufort Seacomprises a series of lagoons that account for > 50 % of the land–sea interface. The lagoon ecosystems are novel features that cycle between“open” and “closed” phases (i.e., ice-free and ice-covered, respectively). In this study, we collected high-frequency pH, salinity,temperature, and photosynthetically active radiation (PAR) measurements in association with the Beaufort Lagoon Ecosystems – Long Term Ecological Research program – for an entire calendar yearin Kaktovik Lagoon, Alaska, USA, capturing two open-water phases and one closed phase. Hourly pH variability during the open-water phases are someof the fastest rates reported, exceeding 0.4 units. Baseline pH varied substantially between the open phase in 2018 and open phase in 2019 from ∼ 7.85to 8.05, respectively, despite similar hourly rates of change. Salinity–pH relationships were mixed during all three phases, displaying nocorrelation in the 2018 open phase, a negative correlation in the 2018/19 closed phase, and a positive correlation during the 2019 open phase. The high frequency of pH variabilitycould partially be explained by photosynthesis–respiration cycles as correlation coefficients between daily average pH and PAR were 0.46 and 0.64for 2018 and 2019 open phases, respectively. The estimated annual daily average CO2 efflux (from sea to atmosphere) was5.9 ± 19.3 mmolm-2d-1, which is converse to the negative influx of CO2 estimated for the coastal Beaufort Seadespite exhibiting extreme variability. Considering the geomorphic differences such as depth and enclosure in Beaufort Sea lagoons, furtherinvestigation is needed to assess whether there are periods of the open phase in which lagoons are sources of carbon to the atmosphere, potentiallyoffsetting the predicted sink capacity of the greater Beaufort Sea. 
    more » « less
  2. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 23 July 2022 at Derksen and Schmutz Basins on the Arctic Coastal Plain of northern Alaska. 6,158 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 580 hectares (ha). The drone system was flown at 100 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). 
    more » « less
  3. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 20 July 2022 at Novo Basin on the Arctic Coastal Plain of northern Alaska. 332 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 43 hectares (ha). The drone system was flown at 100 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). 
    more » « less
  4. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 19 and 20 July 2022 at the Bugeye Lakes Complex on the Arctic Coastal Plain of northern Alaska. 5,968 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 320 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. 
    more » « less
  5. Abstract. Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments. 
    more » « less