skip to main content


Title: Hypermassive black holes have faint broad and narrow emission lines
ABSTRACT The extreme ultraviolet region (EUV) provides most of the ionization that creates the high equivalent width (EW) broad and narrow emission lines (BELs and NELs) of quasars. Spectra of hypermassive Schwarzschild black holes (HMBHs; MBH ≥ 1010 M⊙) with α-discs, decline rapidly in the EUV suggesting much lower EWs. Model spectra for BHs of mass 106–1012 M⊙ and accretion rates 0.03 ≤ Lbol/LEdd ≤ 1.0 were input to the cloudy photoionization code. BELs become ∼100 times weaker in EW from MBH ∼ 108 M⊙ to MBH ∼ 1010 M⊙. The high-ionization BELs (O vi 1034 Å, C iv 1549 Å, and He ii 1640 Å) decline in EW from MBH ≥ 106 M⊙, reproducing the Baldwin effect, but regain EW for MBH ≥ 1010 M⊙. The low-ionization lines (Mg ii 2798 Å, H β 4861 Å, and H α 6563 Å) remain weak. Lines for maximally spinning HMBHs behave similarly. Line ratio diagrams for the BELs show that high O vi/H β and low C iv/H α may pick out HMBH, although O vi is often hard to observe. In NEL BPT diagrams, HMBHs lie among star-forming regions, except for highly spinning, high accretion rate HMBHs. In summary, the BELs expected from HMBHs would be hard to detect using the current optical facilities. From 100 to 1012 M⊙, the emission lines used to detect active galactic nuclei (AGNs) only have high EW in the 106–109 M⊙ window, where most AGNs are found. This selection effect may be distorting reported distributions of MBH.  more » « less
Award ID(s):
1816537
NSF-PAR ID:
10279499
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
2992 to 3010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Nearly a decade ago, we began to see indications that reionization-era galaxies power hard radiation fields rarely seen at lower redshift. Most striking were detections of nebular C iv emission in what appeared to be typical low-mass galaxies, requiring an ample supply of 48 eV photons to triply ionize carbon. We have obtained deep JWST/NIRSpec R = 1000 spectroscopy of the two z > 6 C iv-emitting galaxies known prior to JWST. Here, we present a rest-UV to optical spectrum of one of these two systems, the multiply-imaged z = 6.1 lensed galaxy RXCJ2248-ID. NIRCam imaging reveals two compact (<22 pc) clumps separated by 220 pc, with one comprising a dense concentration of massive stars (>10 400 M⊙ yr−1 kpc−2) formed in a recent burst. We stack spectra of 3 images of the galaxy (J = 24.8–25.9), yielding a very deep spectrum providing a high-S/N template of strong emission line sources at z > 6. The spectrum reveals narrow high-ionization lines (He ii, C iv, N iv]) with line ratios consistent with powering by massive stars. The rest-optical spectrum is dominated by very strong emission lines ([O iii] EW = 2800 Å), albeit with weak emission from low-ionization transitions ([O iii]/[O ii] = 184). The electron density is found to be very high (6.4–31.0 × 104 cm−3) based on three UV transitions. The ionized gas is metal poor ($12+\log (\rm O/H)=7.43^{+0.17}_{-0.09}$), yet highly enriched in nitrogen ($\log (\rm N/O)=-0.39^{+0.11}_{-0.10}$). The spectrum appears broadly similar to that of GNz11 at z = 10.6, without showing the same AGN signatures. We suggest that the hard radiation field and rapid nitrogen enrichment may be a short-lived phase that many z > 6 galaxies go through as they undergo strong bursts of star formation. We comment on the potential link of such spectra to globular cluster formation.

     
    more » « less
  2. ABSTRACT

    We report the discovery of broad components with P-Cygni profiles of the hydrogen and helium emission lines in the two low-redshift low-metallicity dwarf compact star-forming galaxies SBS 1420+540 and J1444+4840. We found small stellar masses of 106.24 and 106.59 M⊙, low oxygen abundances 12 + log O/H of 7.75 and 7.45, high velocity dispersions reaching σ ∼ 700 and ∼1200 km s−1, high terminal velocities of the stellar wind of ∼1000 and ∼1000–1700 km s−1, respectively, and large EW(H β) of ∼300 Å for both. For SBS 1420+540, we succeeded in capturing an eruption phase by monitoring the variations of the broad-to-narrow component flux ratio. We observe a sharp increase of that ratio by a factor of 4 in 2017 and a decrease by about an order of magnitude in 2023. The peak luminosity of ∼1040 erg s−1 of the broad component in L(H α) lasted for about 6 yr out of a three-decades monitoring. This leads us to conclude that there is probably a luminous blue variable candidate (LBVc) in this galaxy. As for J1444+4840, its very high L(H α) of about 1041 ergs s−1, close to values observed in active galactic nuclei (AGNs) and Type IIn supernovae (SNe), and the variability of no more than 20 per cent of the broad-to-narrow flux ratio of the hydrogen and helium emission lines over a 8 yr monitoring do not allow us to definitively conclude that it contains an LBVc. On the other hand, the possibility that the line variations are due to a long-lived stellar transient of type AGN/SN IIn cannot be ruled out.

     
    more » « less
  3. Abstract

    We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.

     
    more » « less
  4. null (Ed.)
    Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most of the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases. 
    more » « less
  5. ABSTRACT

    Quasar absorption-line studies in the ultraviolet (UV) can uniquely probe the nature of the multiphase cool–warm (104 < T < 106 K) gas in and around galaxy clusters, promising to provide unprecedented insights into (1) interactions between the circumgalactic medium (CGM) associated with infalling galaxies and the hot (T > 106 K) X-ray emitting intracluster medium (ICM), (2) the stripping of metal-rich gas from the CGM, and (3) a multiphase structure of the ICM with a wide range of temperatures and metallicities. In this work, we present results from a high-resolution simulation of an $\sim 10^{14} \, \mathrm{M}_{\odot }$ galaxy cluster to study the physical properties and observable signatures of this cool–warm gas in galaxy clusters. We show that the ICM becomes increasingly multiphased at large radii, with the cool–warm gas becoming dominant in cluster outskirts. The diffuse cool–warm gas also exhibits a wider range of metallicity than the hot X-ray emitting gas. We make predictions for the covering fractions of key absorption-line tracers, both in the ICM and in the CGM of cluster galaxies, typically observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope (HST). We further extract synthetic spectra to demonstrate the feasibility of detecting and characterizing the thermal, kinematic, and chemical composition of the cool–warm gas using H i, O vi, and C iv lines, and we predict an enhanced population of broad Ly α absorbers tracing the warm gas. Lastly, we discuss future prospects of probing the multiphase structure of the ICM beyond HST.

     
    more » « less