- Award ID(s):
- 1734220
- NSF-PAR ID:
- 10279800
- Date Published:
- Journal Name:
- Memory & Cognition
- ISSN:
- 0090-502X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The methods of magicians provide powerful tools for enhancing the ecological validity of laboratory studies of attention. The current research borrows a technique from magic to explore the relationship between microsaccades and covert attention under near-natural viewing conditions. We monitored participants’ eye movements as they viewed a magic trick where a coin placed beneath a napkin vanishes and reappears beneath another napkin. Many participants fail to see the coin move from one location to the other the first time around, thanks to the magician’s misdirection. However, previous research was unable to distinguish whether or not participants were fooled based on their eye movements. Here, we set out to determine if microsaccades may provide a window into the efficacy of the magician’s misdirection. In a multi-trial setting, participants monitored the location of the coin (which changed positions in half of the trials), while engaging in a delayed match-to-sample task at a different spatial location. Microsaccades onset times varied with task difficulty, and microsaccade directions indexed the locus of covert attention. Our com-bined results indicate that microsaccades may be a useful metric of covert attentional processes in applied and ecologically valid settings.more » « less
-
The medial temporal lobe (MTL) is traditionally considered to be a system that is specialized for long-term memory. Recent work has challenged this notion by demonstrating that this region can contribute to many domains of cognition beyond long-term memory, including perception and attention. One potential reason why the MTL (and hippocampus specifically) contributes broadly to cognition is that it contains relational representations—representations of multidimensional features of experience and their unique relationship to one another—that are useful in many different cognitive domains. Here, we explore the hypothesis that the hippocampus/MTL plays a critical role in attention and perception via relational representations. We compared human participants with MTL damage to healthy age- and education-matched individuals on attention tasks that varied in relational processing demands. On each trial, participants viewed two images (rooms with paintings). On “similar room” trials, they judged whether the rooms had the same spatial layout from a different perspective. On “similar art” trials, they judged whether the paintings could have been painted by the same artist. On “identical” trials, participants simply had to detect identical paintings or rooms. MTL lesion patients were significantly and selectively impaired on the similar room task. This work provides further evidence that the hippocampus/MTL plays a ubiquitous role in cognition by virtue of its relational and spatial representations and highlights its important contributions to rapid perceptual processes that benefit from attention.more » « less
-
Abstract Curiosity can be a powerful motivator to learn and retain new information. Evidence shows that high states of curiosity elicited by a specific source (i.e., a trivia question) can promote memory for incidental stimuli (non-target) presented close in time. The spreading effect of curiosity states on memory for other information has potential for educational applications. Specifically, it could provide techniques to improve learning for information that did not spark a sense of curiosity on its own. Here, we investigated how high states of curiosity induced through trivia questions affect memory performance for unrelated scholastic facts (e.g., scientific, English, or historical facts) presented in close temporal proximity to the trivia question. Across three task versions, participants viewed trivia questions closely followed in time by a scholastic fact unrelated to the trivia question, either just prior to or immediately following the answer to the trivia question. Participants then completed a surprise multiple-choice memory test (akin to a pop quiz) for the scholastic material. In all three task versions, memory performance was poorer for scholastic facts presented after trivia questions that had elicited high versus low levels of curiosity. These results contradict previous findings showing curiosity-enhanced memory for incidentally presented visual stimuli and suggest that target information that generates a high-curiosity state interferes with encoding complex and unrelated scholastic facts presented close in time.
-
Attention allows us to select relevant and ignore irrelevant information from our complex environments. What happens when attention shifts from one item to another? To answer this question, it is critical to have tools that accurately recover neural representations of both feature and location information with high temporal resolution. In the present study, we used human electroencephalography (EEG) and machine learning to explore how neural representations of object features and locations update across dynamic shifts of attention. We demonstrate that EEG can be used to create simultaneous time courses of neural representations of attended features (time point-by-time point inverted encoding model reconstructions) and attended location (time point-by-time point decoding) during both stable periods and across dynamic shifts of attention. Each trial presented two oriented gratings that flickered at the same frequency but had different orientations; participants were cued to attend one of them and on half of trials received a shift cue midtrial. We trained models on a stable period from Hold attention trials and then reconstructed/decoded the attended orientation/location at each time point on Shift attention trials. Our results showed that both feature reconstruction and location decoding dynamically track the shift of attention and that there may be time points during the shifting of attention when 1) feature and location representations become uncoupled and 2) both the previously attended and currently attended orientations are represented with roughly equal strength. The results offer insight into our understanding of attentional shifts, and the noninvasive techniques developed in the present study lend themselves well to a wide variety of future applications. NEW & NOTEWORTHY We used human EEG and machine learning to reconstruct neural response profiles during dynamic shifts of attention. Specifically, we demonstrated that we could simultaneously read out both location and feature information from an attended item in a multistimulus display. Moreover, we examined how that readout evolves over time during the dynamic process of attentional shifts. These results provide insight into our understanding of attention, and this technique carries substantial potential for versatile extensions and applications.more » « less
-
Abstract Intervening on causal systems can illuminate their underlying structures. Past work has shown that, relative to adults, young children often make intervention decisions that appear to confirm a single hypothesis rather than those that optimally discriminate alternative hypotheses. Here, we investigated how the ability to make informative causal interventions changes across development. Ninety participants between the ages of 7 and 25 completed 40 different puzzles in which they had to intervene on various causal systems to determine their underlying structures. Each puzzle comprised a three‐ or four‐node computer chip with hidden wires. On each trial, participants viewed two possible arrangements of the chip's hidden wires and had to select a single node to activate. After observing the outcome of their intervention, participants selected a wire configuration and rated their confidence in their selection. We characterized participant choices with a Bayesian measurement model that indexed the extent to which participants selected nodes that would best disambiguate the two possible causal structures versus those that had high causal centrality in one of the two causal hypotheses but did not necessarily discriminate between them. Our model estimates revealed that the use of a discriminatory strategy increased through early adolescence. Further, developmental improvements in intervention strategy were related to changes in the ability to accurately judge the strength of evidence that interventions revealed, as indexed by participants' confidence in their selections. Our results suggest that improvements in causal information‐seeking extend into adolescence and may be driven by metacognitive sensitivity to the efficacy of previous interventions in discriminating competing ideas.