skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algebraic optimization degree
The Macaulay2 [5] package AlgebraicOptimization implements methods for determining the algebraic degree of an optimization problem. We describe the structure of an algebraic optimization problem and explain how the methods in this package may be used to determine the respective degrees. Special features include determining Euclidean distance degrees and maximum likelihood degrees. To our knowledge, this is the first comprehensive software package combining different methods in algebraic optimization. The package is available at https://github.com/Macaulay2/Workshop-2020-Cleveland/tree/ISSAC-AlgOpt/alg-stat/AlgebraicOptimization.  more » « less
Award ID(s):
2003883
PAR ID:
10279815
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Communications in Computer Algebra
Volume:
54
Issue:
2
ISSN:
1932-2240
Page Range / eLocation ID:
44 to 48
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce the package PhylogeneticTrees for Macaulay2, which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals. 
    more » « less
  2. This paper introduces GEKKO as an optimization suite for Python. GEKKO specializes in dynamic optimization problems for mixed-integer, nonlinear, and differential algebraic equations (DAE) problems. By blending the approaches of typical algebraic modeling languages (AML) and optimal control packages, GEKKO greatly facilitates the development and application of tools such as nonlinear model predicative control (NMPC), real-time optimization (RTO), moving horizon estimation (MHE), and dynamic simulation. GEKKO is an object-oriented Python library that offers model construction, analysis tools, and visualization of simulation and optimization. In a single package, GEKKO provides model reduction, an object-oriented library for data reconciliation/model predictive control, and integrated problem construction/solution/visualization. This paper introduces the GEKKO Optimization Suite, presents GEKKO’s approach and unique place among AMLs and optimal control packages, and cites several examples of problems that are enabled by the GEKKO library. 
    more » « less
  3. This article describes the Macaulay2 package FrobeniusThresholds, designed to estimate and calculate F-pure thresholds, more general F-thresholds, and related numerical invariants arising in the study of singularities in prime characteristic commutative algebra. 
    more » « less
  4. Summary We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented. 
    more » « less
  5. The Partial Integral Equation (PIE) framework provides a unified algebraic representation for use in analysis, control, and estimation of infinite-dimensional systems. However, the presence of input delays results in a PIE representation with dependence on the derivative of the control input, u˙. This dependence complicates the problem of optimal state-feedback control for systems with input delay – resulting in a bilinear optimization problem. In this paper, we present two strategies for convexification of the H∞-optimal state-feedback control problem for systems with input delay. In the first strategy, we use a generalization of Young's inequality to formulate a convex optimization problem, albeit with some conservatism. In the second strategy, we filter the actuator signal – introducing additional dynamics, but resulting in a convex optimization problem without conservatism. We compare these two optimal control strategies on four example problems, solving the optimization problem using the latest release of the PIETOOLS software package for analysis, control and simulation of PIEs. 
    more » « less