skip to main content

Title: Phase transition in Polymer Derived Ceramics (PDCs) and its effect on mechanical response
Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and mechanical response. Calculations in this work concern PMHS/DVB. Molecular dynamics simulations are carried out first to track the chemical reaction mechanisms and atomic structure evolution. The density of generated gas during pyrolysis is transferred to the finite element model (FEM) for coupled heat transfer and phase transition analysis. FEM calculations reveal the effect of pyrolysis temperature and heating rate on structure-level phase composition and elastic modulus. It is found that there is a threshold of pyrolysis temperature above which full ceramic phase is formed. Higher heating rate promotes ceramization and leads to higher elastic modulus. In addition, volume shrinkage is found to accelerate ceramic formation which slightly enhances material strength.
Authors:
Award ID(s):
1757371
Publication Date:
NSF-PAR ID:
10279964
Journal Name:
Proceedings of the International Conference on Computational Methods
Volume:
12
Page Range or eLocation-ID:
1962-1972
ISSN:
2374-3948
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and failure response. Calculations in this work concern PMHS/DVB preceramic polymers. Molecular dynamics (MD) simulations are carried out first to track the atomic structure evolution at different temperatures. Continuum-scale ceramic phase formation is calculated on the basis of the competition between gas generation and gas diffusion. The effect of processing parameters on mechanical properties of pyrolyzed PMHS/DVB is systematically studied. Conclusions from this study can provide direct guidance for fabricating PDC composites with tailored mechanical properties.
  2. Abstract

    We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modifiedmore »Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO.

    « less
  3. Photo-induced thiol-ene crosslinking of allyl-functionalized cellulose nanocrystal (CNC)/polymer nanocomposites allows access to films that mimic the water-enhanced mechanical gradient characteristics of the squid beak. These films are prepared by mixing the functionalized CNCs and polymer in a solvent before solution casting and drying. The photocrosslinking agents are then imbibed into the film before UV exposure. Reported herein are studies aimed at better understanding the effect of the film preparation procedure, film thickness and the conditions under which the UV treatment is carried out. It was found that when the film is heated at a temperature higher than its glass transition temperature (Tg) during the UV irradiation step there is a greater enhancement in the mechanical properties of the films, presumably on account of more efficient crosslinking between the CNC fillers. Moreover, composite films that were compression molded (at 90°C) before the imbibing step displayed lower mechanical properties compared to the as-cast films, which is attributed to phase separation of the CNC fillers and polymer matrix during this additional processing step. Finally, the film thickness was also found to be a critical factor that affects the degree of crosslinking. For example, thinner films (50 µm) displayed a higher wet modulus ca.more »130 MPa compared to ca. 80 MPa for the thicker films (150 µm). Understanding the processing conditions allows access to a larger range of mechanical properties which is important for the design of new bio-inspired mechanical gradient nanocomposites.« less
  4. We investigate the influence of the host matrix on the photothermally driven actuation performance of negatively photochromic, donor−acceptor Stenhouse adduct (DASA)-based polymers. Using a modular Diels−Alder “click” platform, we designed polymeric materials with varying DASA incorporation and investigated the relationships between the material composition and the resulting physical, mechanical, and photoswitching properties. We demonstrate that increasing the DASA concentration in polymer conjugates has a dramatic effect on the material’s physical and mechanical properties, such as the glass transition temperature (Tg) and elastic modulus, as well as the photoswitching properties, which are found to be highly dependent on Tg. We establish using a simple photoresponsive bilayer that actuation performance is controlled by the bilayer stiffness rather than the photochrome incorporation of DASA. Finally, we report and compare the light-induced property changes in Tg and the elastic modulus between the materials comprising the open or closed forms of DASAs. Our results demonstrate the importance of designing a material that is stiff enough to provide the mechanical strength required for actuation under load, but soft enough to reversibly switch at the operational temperature and provide key considerations for the development of application-geared photoswitchable materials.
  5. Alignment of highly anisotropic nanomaterials in a polymer matrix can yield nanocomposites with unique mechanical and transport properties. Conventional methods of nanocomposite film fabrication are not well-suited for manufacturing composites with very high concentrations of anisotropic nanomaterials, potentially limiting the widespread implementation of these useful structures. In this work, we present a scalable approach to fabricate polymer-infiltrated nanoplatelet films (PINFs) based on flow coating and capillary rise infiltration (CaRI) and study the processing–structure–property relationship of these PINFs. We show that films with high aspect ratio (AR) gibbsite (Al (OH) 3 ) nanoplatelets (NPTs) aligned parallel to the substrate can be prepared using a flow coating process. NPTs are highly aligned with a Herman's order parameter of 0.96 and a high packing fraction >80 vol%. Such packings show significantly higher fracture toughness compared to low AR nanoparticle (NP) packings. By depositing NPTs on a polymer film and subsequently annealing the bilayer above the glass transition temperature of the polymer, polymer infiltrates into the tortuous NPT packings though capillarity. We observe larger enhancement in the modulus, hardness and scratch resistance of NPT films upon polymer infiltration compared to NP packings. The excellent mechanical properties of such films benefit from both thermally promotedmore »oxide bridge formation between NPTs as well as polymer infiltration increasing the strength of NPT contacts. Our approach is widely applicable to highly anisotropic nanomaterials and allows the generation of mechanically robust polymer nanocomposite films for a diverse set of applications.« less