skip to main content


Title: Effect of pyrolysis parameters on mechanical properties of polymer-derived ceramics
Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and failure response. Calculations in this work concern PMHS/DVB preceramic polymers. Molecular dynamics (MD) simulations are carried out first to track the atomic structure evolution at different temperatures. Continuum-scale ceramic phase formation is calculated on the basis of the competition between gas generation and gas diffusion. The effect of processing parameters on mechanical properties of pyrolyzed PMHS/DVB is systematically studied. Conclusions from this study can provide direct guidance for fabricating PDC composites with tailored mechanical properties.  more » « less
Award ID(s):
1757371
NSF-PAR ID:
10398725
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Computational Materials Science and Engineering
Volume:
12
Issue:
01
ISSN:
2047-6841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and mechanical response. Calculations in this work concern PMHS/DVB. Molecular dynamics simulations are carried out first to track the chemical reaction mechanisms and atomic structure evolution. The density of generated gas during pyrolysis is transferred to the finite element model (FEM) for coupled heat transfer and phase transition analysis. FEM calculations reveal the effect of pyrolysis temperature and heating rate on structure-level phase composition and elastic modulus. It is found that there is a threshold of pyrolysis temperature above which full ceramic phase is formed. Higher heating rate promotes ceramization and leads to higher elastic modulus. In addition, volume shrinkage is found to accelerate ceramic formation which slightly enhances material strength. 
    more » « less
  2. Polymer-derived ceramic (PDC) nanocomposites enable access to a large library of functional properties starting from molecular design and incorporating nanofillers. Tailoring preceramic polymer (PCP) chemistry and nanofiller size and morphology can lead to usage of the nanocomposites in complex shapes and coatings with enhanced thermal and mechanical properties. A rational design of targeted nanocomposites requires an understanding of fundamental structure–property–performance relations. Thus, we tailor our discussions of PCP design and nanofiller integration into single source precursors as well as pyrolytic processing for functionalizing PDCs. We also discuss the promises and limitations of advanced characterization techniques such as 4D transmission electron microscopy and pair distribution functions to enable in situ mapping structural evolution. The feedback loop of in situ monitoring sets the foundation for enabling accelerated materials discovery with artificial intelligence. This perspective assesses the recent progress of PDC nanocomposite research nanocomposites and presents scientific and engineering challenges for synthesis, fabrication, processing, and advanced characterization of PDC nanocomposites for enhanced magnetic, electrical, and energy conversion and storage properties. 
    more » « less
  3. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  4. null (Ed.)
    316L stainless steel (SS) to Al12Si aluminum alloy structures were processed, tailoring the compositionally graded interface on a SS 316 substrate using a directed energy deposition (DED)-based additive manufacturing (AM) process. Applying such a compositionally graded transition on bimetallic materials, especially joining two dissimilar metals, could avoid the mechanical property mismatch. This study's objective was to understand the processing parameters that influence the properties of AM processed SS 316L to Al12Si bimetallic structures. Two different approaches fabricated these bimetallic structures. The results showed no visible defects on the as-fabricated samples using 4 layers of Al-rich mixed composition as the transition section. The microstructural characterization showed a unique morphology in each section. Both cooling rate and compositional variations caused microstructural variation. FeAl, Fe2Al5, and FeAl3 intermetallic phases were formed at the compositionally graded transition section. After stress relief heat-treatment of SS 316L/Al12Si bimetallic samples, diffused intermetallic phases were seen at the compositionally graded transition. At the interface, as processed, bimetallic structures had a microhardness value of 834.2 ± 107.1 HV0.1, which is a result of the FeAl3 phase at the compositionally graded transition area. After heat-treatment, the microhardness value reduced to 578.7 ± 154.1 HV0.1 due to more Fe dominated FexAly phase formation. The compression test results showed that the non-HT and HT SS 316L/Al12Si bimetallic structures had a similar maximum compressive strength of 299.4 ± 22.1 MPa and 270.1 ± 27.1 MPa, respectively. 
    more » « less
  5. Abstract

    Membrane‐based gas separations are crucial for an energy‐efficient future. However, it is difficult to develop membrane materials that are high‐performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd‐catalyzed C−O coupling reactions. The scaffold of these microporous polymers consists of rigid three‐dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution‐processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2/CH4and (H2S+CO2)/CH4selectivity in mixture tests as predicted by the dual‐mode sorption model. The structural tunability, stability, and ease‐of‐processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.

     
    more » « less