The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5 dex, which is 0.2 dex poorer than Baade’s Window. The α -elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α -elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with v gal > 300 km s −1 ; the metal-rich stars show a much higher rotation velocity (∼200 km s −1 ) with respect to the metal-poor stars (∼140 km s −1 ). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently.
more »
« less
Cool, Luminous, and Highly Variable Stars in the Magellanic Clouds from ASAS-SN: Implications for Thorne–Żytkow Objects and Super-asymptotic Giant Branch Stars
More Like this
-
-
Context. Large spectroscopic surveys of the Milky Way must be calibrated against a sample of benchmark stars to ensure the reliable determination of atmospheric parameters. Aims. Here, we present new fundamental stellar parameters of seven giant and subgiant stars that will serve as benchmark stars for large surveys. The aim is to reach a precision of 1% in the effective temperature. This precision is essential for accurate determinations of the full set of fundamental parameters and abundances for stars observed by the stellar surveys. Methods. We observed HD 121370 ( η Boo), HD 161797 ( μ Her), HD 175955, HD 182736, HD 185351, HD 188512 ( β Aql), and HD 189349, using the high angular resolution optical interferometric instrument PAVO at the CHARA Array. The limb-darkening corrections were determined from 3D model atmospheres based on the STAGGER grid. The T eff were determined directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. We estimated surface gravities from comparisons to Dartmouth stellar evolution model tracks. The spectroscopic observations were collected from the ELODIE and FIES spectrographs. We estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutral and singly ionised iron. Results. For six of the seven stars, we measured the value of T eff to better than 1% accuracy. For one star, HD 189349, the uncertainty on T eff is 2%, due to an uncertain bolometric flux. We do not recommend this star as a benchmark until this measurement can be improved. Median uncertainties for all stars in log g and [Fe/H] are 0.034 dex and 0.07 dex, respectively. Conclusions. This study presents updated fundamental stellar parameters of seven giant and subgiant stars that can be used as a new set of benchmarks. All the fundamental stellar parameters were established on the basis of consistent combinations of interferometric observations, 3D limb-darkening modelling, and spectroscopic analysis. This paper in this series follows our previous papers featuring dwarf stars and stars in the metal-poor range.more » « less
An official website of the United States government

