Defying the isotropic nature of traditional chemical etch, metal-assisted chemical etching (MacEtch) has allowed spatially defined anisotropic etching by using patterned metal catalyst films to locally enhance the etch rate of various semiconductors. Significant progress has been made on achieving unprecedented aspect ratio nanostructures using this facile approach, mostly in solution. However, the path to manufacturing scalability remains challenging because of the difficulties in controlling etch morphology (e.g., porosity and aggregation) and etch rate uniformity over a large area. Here, we report the first programmable vapor-phase MacEtch (VP-MacEtch) approach, with independent control of the etchant flow rates, injection and pulse time, and chamber pressure. In addition, another degree of freedom, light irradiation is integrated to allow photo-enhanced VP-MacEtch. Various silicon nanostructures are demonstrated with each of these parameters systematically varied synchronously or asynchronously, positioning MacEtch as a manufacturing technique for versatile arrays of three-dimensional silicon nanostructures. This work represents a critical step or a major milestone in the development of silicon MacEtch technology and also establishes the foundation for VP-MacEtch of compound semiconductors and related heterojunctions, for lasting impact on damage-free 3D electronic, photonic, quantum, and biomedical devices.
more »
« less
Metal-Assisted Catalytic Etching (MACE) for Nanofabrication of Semiconductor Powders
Electroless etching of semiconductors has been elevated to an advanced micromachining process by the addition of a structured metal catalyst. Patterning of the catalyst by lithographic techniques facilitated the patterning of crystalline and polycrystalline wafer substrates. Galvanic deposition of metals on semiconductors has a natural tendency to produce nanoparticles rather than flat uniform films. This characteristic makes possible the etching of wafers and particles with arbitrary shape and size. While it has been widely recognized that spontaneous deposition of metal nanoparticles can be used in connection with etching to porosify wafers, it is also possible to produced nanostructured powders. Metal-assisted catalytic etching (MACE) can be controlled to produce (1) etch track pores with shapes and sizes closely related to the shape and size of the metal nanoparticle, (2) hierarchically porosified substrates exhibiting combinations of large etch track pores and mesopores, and (3) nanowires with either solid or mesoporous cores. This review discussed the mechanisms of porosification, processing advances, and the properties of the etch product with special emphasis on the etching of silicon powders.
more »
« less
- Award ID(s):
- 1825331
- PAR ID:
- 10280061
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal‐assisted electrochemical nanoimprinting (Mac‐Imprint) scales the fabrication of micro‐ and nanoscale 3D freeform geometries in silicon and holds the promise to enable novel chip‐scale optics operating at the near‐infrared spectrum. However, Mac‐Imprint of silicon concomitantly generates mesoscale roughness (e.g., protrusion size ≈45 nm) creating prohibitive levels of light scattering. This arises from the requirement to coat stamps with nanoporous gold catalyst that, while sustaining etchant diffusion, imprints its pores (e.g., average diameter ≈42 nm) onto silicon. In this work, roughness is reduced to sub‐10 nm levels, which is in par with plasma etching, by decreasing pore size of the catalyst via dealloying in far‐from equilibrium conditions. At this level, single‐digit nanometric details such as grain‐boundary grooves of the catalyst are imprinted and attributed to the resolution limit of Mac‐Imprint, which is argued to be twice the Debye length (i.e., 1.7 nm)—a finding that broadly applies to metal‐assisted chemical etching. Last, Mac‐Imprint is employed to produce single‐mode rib‐waveguides on pre‐patterned silicon‐on‐insulator wafers with root‐mean‐square line‐edge roughness less than 10 nm while providing depth uniformity (i.e., 42.9 ± 5.5 nm), and limited levels of silicon defect formation (e.g., Raman peak shift < 0.1 cm−1) and sidewall scattering.more » « less
-
This research reports the development of 3D carbon nanostructures that can provide unique capabilities for manufacturing carbon nanotube (CNT) electronic components, electrochemical probes, biosensors, and tissue scaffolds. The shaped CNT arrays were grown on patterned catalytic substrate by chemical vapor deposition (CVD) method. The new fabrication process for catalyst patterning based on combination of nanoimprint lithography (NIL), magnetron sputtering, and reactive etching techniques was studied. The optimal process parameters for each technique were evaluated. The catalyst was made by deposition of Fe and Co nanoparticles over an alumina support layer on a Si/SiO2 substrate. The metal particles were deposited using direct current (DC) magnetron sputtering technique, with a particle ranging from 6 nm to 12 nm and density from 70 to 1000 particles/micron. The Alumina layer was deposited by radio frequency (RF) and reactive pulsed DC sputtering, and the effect of sputtering parameters on surface roughness was studied. The pattern was developed by thermal NIL using Si master-molds with PMMA and NRX1025 polymers as thermal resists. Catalyst patterns of lines, dots, and holes ranging from 70 nm to 500 nm were produced and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Vertically aligned CNTs were successfully grown on patterned catalyst and their quality was evaluated by SEM and micro-Raman. The results confirm that the new fabrication process has the ability to control the size and shape of CNT arrays with superior quality.more » « less
-
This study presents a comprehensive analysis of the etching effects on β-Ga2O3 using two methods: H2_N2 (a mixture of hydrogen and nitrogen) etching and triethylgallium (TEGa) in situ etching performed in a metal-organic chemical vapor deposition system. By employing a mix of H2 and N2 gases at varying chamber pressures and maintaining a constant etching temperature of 750 °C, we investigated the etching dynamics across three different β-Ga2O3 orientations: (010), (001), and (2¯01). Field emission scanning electron microscopy analysis showed that the etching behavior of β-Ga2O3 depends on the crystal orientation, with the (010) orientation showing notably uniform and smooth surfaces, indicating its suitability for vertical device applications. High-aspect-ratio β-Ga2O3 fin arrays were fabricated on (010) substrates using H2_N2 etching, yielding fin structures with widths of 2 μm and depths of 3.1 μm, along with smooth and well-defined sidewalls. The etching process achieved exceptionally high etch rates (>18 μm/h) with a strong dependence on pressure and sidewall orientation, revealing the trade-off between etch depth and surface smoothness. Separately, TEGa in situ etching was investigated as an alternative etching technique for both β-Ga2O3 and β-(AlxGa1−x)2O3 films. The results revealed that the (010) orientation exhibited relatively high etching rates while maintaining smoother sidewalls and top surfaces, making it favorable for device processing. In contrast, the (001) orientation showed strong resistance to TEGa etching. Furthermore, Al-incorporated β-(AlxGa1−x)2O3 films showed substantially lower etch rates compared to pure β-Ga2O3, suggesting their potential use as an effective etch-stop layer in advanced device fabrication.more » « less
-
In this study, we demonstrate a tolerant and durable Cr/Ni bilayer metal etch mask that allows us to realize approximately 150:1 etch selectivity to diamond. This result is achieved through the use of a very thin initial Cr layer of <10 nm thickness as part of the bilayer metal mask, which results in five to ten times improved selectivity than thick single metal layer masks or bilayer masks with thicker combinations. A finite element analysis was employed to design and understand the physics and working mechanism of the bilayer metal masks with different thicknesses. Raman spectroscopy and energy-dispersive x-ray spectroscopy on the diamond surface were also performed to investigate the changes in diamond quality before and after the deep diamond etching and found that no noticeable etch damage or defects were formed. Overall, this mask strategy offers a viable way to realize deep diamond etching using a high heat and chemistry tolerant and durable bilayer metal etching mask. It also offers several technological benefits and advantages, including various deposition method options, such as sputtering and physical vapor deposition, that can be used and the total thinness of the bilayer metal mask required given the higher selectivity allows us to realize fine diamond etching or high-aspect ratio etching, which is a critical fabrication process for future power, RF, MEMS, and quantum device applications.more » « less
An official website of the United States government

